Design and implementation of a digital infrastructure for autonomous open-die forging
Roy Rechenberg1, Grzegorz Korpala1
, Magdalena Jabłońska2
, Marek Wojtaszek3
, Krystian Zyguła3
, Marek Tkocz4
, Iwona Bednarczyk4
, Karolina Kowalczyk5
, Ulrich Prahl1
1TU Bergakademie Freiberg, Akademiestraße 6, 09599 Freiberg, Germany.
2Lukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland.
3AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.
4Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland.
5University of Silesia, ul. Bankowa 12, 40-007 Katowice, Poland.
DOI:
https://doi.org/10.7494/cmms.2025.2.1018
Abstract:
Open-die forging is a key process for manufacturing large components such as generator shafts and crankshafts for ship engines. Despite its industrial relevance, the process remains dependent on manual labour and operator expertise, leading to challenges in process stability, reproducibility, and efficiency. Traditional automation approaches are impractical due to the high variability and low production volumes typical of open-die forging. At the Institute of Metal Forming (IMF) at the TU Bergakademie Freiberg, a novel concept for autonomous open-die forging has been developed and tested. The system combines conventional forging equipment with advanced technologies, including industrial robotics, 3D laser scanning, thermal imaging, and modular control software. Central to the concept is a robot cell operating as a distributed system, where sensor data is used to create a digital twin of the workpiece. This enables adaptive process planning and real-time autonomous operative adjustments. A process planning tool generates pass sequences and commands for manipulator movements, while an electromechanical interface allows indirect control of the forging press. The modular software architecture, coordinated by a central core-module, ensures flexibility and facilitates integration into different production environments. Initial trials demonstrate the system’s potential to improve process stability and quality while reducing dependency on manual operation. Ongoing work focuses on refining the concept to meet industrial requirements and support advanced material applications.
Cite as:
Rechenberg, R., Korpala, G., Jabłońska, M., Wojtaszek, M., Zyguła, K., Tkocz, M., Bednarczyk, I., Kowalczyk, K., & Prahl, U. (2025). Design and implementation of a digital infrastructure for autonomous open-die forging. Computer Methods in Materials Science, 25(2), 5-15. https://doi.org/10.7494/cmms.2025.2.1018
Article (PDF):

Keywords:
Automation, Forging, Open-die forging
References:
Aksakal, B., Osman, F. H., & Bramley, A. N. (1997). Upper-bound analysis for the automation of open-die forging. Journal of Materials Processing Technology, 71(2), 215–223. https://doi.org/10.1016/s0924-0136(97)00078-2
Dindorf, R., Takosoglu, J., & Wos, P. (2021). Prediction of the parameters and the hot open die elongation forging process on an 80 MN hydraulic press. Open Engineering, 11(1), 528–534. https://doi.org/10.1515/eng-2021-0056
Elbadan, A. M. (2004). Adaptive Scheduling for an Incremental Flexible Forging Cell [Doctoral dissertation, McMaster University]. Mac Sphere. http://hdl.handle.net/11375/6276
Heginbotham, W. B., Sengupta, A. K., & Appleton, E. (1979). An ASEA robot as an open-die forging manipulator. IFAC Proceedings Volumes, 12(10), 183–193. https://doi.org/10.1016/S1474-6670(17)65358-8
Hirt, G., Krämer, A. M., & Wolfgarten, M. Ch. (2016). Virtueller Einblick für den Schmied. RWTH-Themen: Forschungsmagazin, 1, 18–25. https://doi.org/10.18154/RWTH-2016-06286
Lilly, K. W., & Melligeri, A. S. (1996). Dynamic simulation and neural network compliance control of an intelligent forging center. Journal of Intelligent and Robotic Systems, 17, 81–99. https://doi.org/10.1007/BF00435717
My, Ch. A., Le, Ch. H., Packianather, M., & Bohez, E. L. J. (2018). Novel robot arm design and implementation for hot forging press automation. International Journal of Production Research, 57(14), 4579–4593. https://doi.org/10.1080/00207543.2018.1521026
Nye, T. J., Elbadan, A. M., & Bone, G. M. (2001). Realtime characterization of open die forging for adaptive control. Journal of Engineering Materials and Technology, 123(4), 511–516. https://doi.org/10.1115/1.1396350
Osman, F. H., & Ferreira, J. (1999). Investigation into the automation of incremental forming processes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 213(3), 311–315. https://doi.org/10.1243/0954405991516787
Rao, V. D. (2021). Metallurgical integrity for economic production of quality steel forgings for advanced applications. Materials Today: Proceedings, 39(4), 1434–1439. https://doi.org/10.1016/j.matpr.2020.05.181
Rechenberg, R., Pulawski, M., Zapf, M., Korpala, G., & Prahl, U. (2023). Adaptive calculation of pass sequences for open die forging. In 29. Sächsische Fachtagung Umformtechnik. Technische Universität Dresden. https://doi.org/10.25368/2023.182
Reinisch, N., Rudolph, F., Günther, S., Bailly, D., & Hirt, G. (2021). Successful pass schedule design in open-die forging using double deep Q-learning. Processes, 9(7), 1084. https://doi.org/10.3390/pr9071084
Riedel, M., Wiese, T., Hellmich, A., & Ihlenfeldt, S. (2019). Fast and cost efficient measuring of geometry and temperature for open-die forging. Journal of Machine Engineering, 19(3), 83–94.
Rudolph, F., Wolfgarten, M., Keray, V., & Hirt, G. (2021). Optimization of open-die forging using fast models for strain, temperature, and grain size in the context of an assistance system. In G. Daehn, J. Cao, B. Kinsey, E. Tekkaya, A. Vivek & Y. Yoshida (Eds.), The Minerals, Metals & Materials Series. Forming the Future (pp. 1145–1159). Springer Cham. https://doi.org/10.1007/978-3-030-75381-8_96
Tomlinson, A., & Stringer, J. D. (1959). Spread and elongation in flat tool forging. Journal of the Iron and Steel Institute, 193(2), 157–162.
Wang, X.-y., Yukawa, N., Yoshita, Y., Sukeda, T., & Ishikawa, T. (2009). Research on some basic deformations in free forging with robot and servo-press. Journal of Materials Processing Technology, 209(6), 3030–3038. https://doi.org/10.1016/j.jmatprotec.2008.07.012
Wolfgarten, M. (2019). Gezielte Fertigung längsorientierter Formteile im Freiformschmieden durch überlagerte Spannungszustände [Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen].