Statistical evaluation of the measurement of residual stresses in the surface layer of CP1000 steel sheets using the magnetic Barkhausen noise and X-ray methods
Janusz Kliś1, Rafał Nawrat1, Jakub Olbrych1, Michał Węgrzyniak1, Damian Szydło1, Grzegorz Toczek1, Liwia Sozańska-Jędrasik2
1ArcelorMittal Distribution Solution Poland sp. z o.o.
2Łukasiewicz Research Network – Upper Silesian Institute of Technology.
DOI:
https://doi.org/10.7494/cmms.2025.1.1009
Abstract:
The paper presents an analysis of the possibility of measuring the residual stresses of metal sheets with the application of the so-called Barkhausen effect. The aim of the research was to compare the residual stress levels measured by two methods of multiphase steel sheets (ferritic-martensitic-bainitic) in grade HCT980C after flattening on a roller leveller in industrial conditions. The measurements were carried out using two methods: the Barkhausen effect method and the X-ray method. The paper describes in detail the methodology used for testing the measurement of residual stresses. The residual stress testing of sheets made of the CP1000 steel group was supplemented with tests of chemical composition, microstructure and mechanical properties (Re, Rm, A80, HRC hardness). In the analysis of the research results, elements of statistics were also used, in the form of ordinary correlation. The research results showed that in the case of sheets after flattening on a roller leveller in industrial conditions, it is possible to replace the commonly used and recognized, but labour-intensive X-ray method, with a simple, innovative and cheap to use method using the Barkhausen effect. Stress measurement using the Barkhausen effect has already been found to be applicable in the diagnostics of tracking changes in the stress value in the material in industrial pipelines, where access to the other measurement methods is difficult or even impossible. Currently, the measurement of stress in sheets by the magnetic method is introduced on the transverse cutting line when cutting the sheet metal from coils to metal sheets. The measurement of stresses in the production of steel sheets is important because the difference in stress between the top and bottom sides of the sheet has a significant effect on the flatness of manufactured metal sheets.
Cite as:
Kliś, J., Nawrat, R., Olbrych, J., Węgrzyniak, M., Szydło, D., Toczek, G., & Sozańska-Jędrasik, L. (2025). Statistical evaluation of the measurement of residual stresses in the surface layer of CP1000 steel sheets using the magnetic Barkhausen noise and X-ray methods. Computer Methods in Materials Science, 25(1), 15-30. https://doi.org/10.7494/cmms.2025.1.1009
Article (PDF):

Keywords:
State of stress, Residual stress, Surface layer, Barkhausen noise analysis method, Cos(α) method, CP1000 steel
References:
Augustyniak, B. (2003). Zjawiska magnetosprężyste i ich wykorzystanie w nieniszczących badaniach materiałów [Magnetoelastic Phenomena and their Use in Non-destructive Testing of Materials]. Wydawnictwo Politechniki Gdańskiej.
Augustyniak, B. (2015). Opracowanie magnetycznej metody oceny stanu naprężeń w materiałach konstrukcyjnych zwłaszcza anizotropowych [Development of a Magnetic Method for Evaluating the State of Stress in Structural Materials Especially Anisotropic Ones]. Raport końcowy projektu NCBiR nr PBS1/A9/14/2012 [Final report of the NCBiR project no. PBS1/A9/14/2012] [unpublished].
Augustyniak, B. (2016). Zalety magnetycznej metody pomiaru naprężeń w elementach stalowych [Advantages of the magnetic method of measuring stress in steel elements]. Służby Utrzymania Ruchu, 5(61), 26–30.
Augustyniak, B. (2017). Procedura badania PB01 stanu naprężenia w elementach stalowych z wykorzystaniem efektu Barkhausena [Procedure for PB01 testing of stress state in steel components using the Barkhausen effect]. Przegląd Spawalnictwa, 89(11), 67–69.
Augustyniak, B., Piotrowski, L., Chmielewski, M., Kiełczyński, W., & Prokop, K. (2014). Progress in post weld residual stress evaluation using Barkhausen effect meter with a novel rotating magnetic field probe. 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6–10, 2014, Prague, Czech Republic. https://www.ndt.net/events/ECNDT2014/app/content/Paper/647_Augustyniak.pdf
Augustyniak, B., Chmielewski, M., Sędek, P., & Krasnowski, K. (2019). Porównawcze badania stanu naprężeń w cieplnie i mechanicznie odprężanych złączach spawanych z wykorzystaniem efektu Barkhausena i metody trepanacji [Comparative studies using the Barkhausen effect and the trepanation method of stress state in thermally and mechanically annealed welded joints]. Badania Nieniszczące i Diagnostyka, 4(1), 12–16.
Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A review. Chinese Journal of Aeronautics, 34(2), 54–78. https://doi.org/10.1016/j.cja.2019.10.010
Hosseinzadeh, F., Smith, D. J., & Truman, C. E. (2009). Through thickness residual stresses in large rolls and sleeves for metal working industry. Materials science and Technology, 25(7), 862–873. https://doi.org/10.1179/174328408X363335
Kandil, F. A., Lord, J. D., Fry, A. T., & Grant, P. V. (2001). A Review of Residual Stress Measurement Methods – A Guide to Technique Selection. NPL Report MATC(A)O4. https://eprintspublications.npl.co.uk/1873/1/matc4.pdf
Kokosza, A., & Pacyna, J. (2016). Stress analysis in the surface layer of steel castings. Transactions of Foundary Research Institute, 56(1), 17–29. https://doi.org/10.7356/iod.2016.03
Maliński, M. (2004). Weryfikacja hipotez statystycznych wspomagana komputerowo [Computer-aided testing of statistical hypotheses]. Wydawnictwo Politechniki Śląskiej.
Maliński, M. (2010). Wybrane zagadnienia statystyki matematycznej w Excelu i pakiecie Statistica [Selected topics in mathematical statistics in Excel and the Statistica package]. Wydawnictwo Politechniki Śląskiej.
NNT (2019). Meb2Cx Multimeter – Manual.
Office of Technical Inspection (2020). Świadectwo Uznania UDT nr LBU-313/06-20 [Certificate of Recognition of OTI no. LBU-313/06-20]. Gdańsk.
PN-EN 10338:2015-10. Hot Rolled and Cold Rolled Non-Coated Products of Multiphase Steels for Cold Forming – Technical Delivery.
Polish Register of Shipping (2017). Świadectwo Uznania PRS nr TT /821/710405/17 [Certificate of Recognition of PRS no. TT /821/710405/17]. Gdańsk.
Pulstec Industrial (2022). Prospectus of PULSTEC Industrial Co., Ltd. 7000-35 Nakagawa, Hosoe-cho, Kita-ku, Hamamatsu-City, Shizuoka 4311304 JAPAN.
Senczyk, D. (1996). Naprężenia własne: wstęp do generowania, sterowania i wykorzystania [Residual stresses: Intoduction to generate, control and use]. Wydawnictwo Politechniki Poznańskiej.
Skrzypek, S. J. (2002). Nowe możliwości pomiaru makronaprężeń własnych materiałów przy zastosowaniu dyfrakcji promieniowania X w geometrii stałego kąta padania [New approach measurements of macro residual stresses based on grazing incident angle of X-ray diffraction]. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne.
Sozańska-Jędrasik, L., Janik, A., Radwański R., Kuziak, R., & Kliś, J. (2021) Badania naprężeń własnych w wyrobach przemysłowych z wykorzystaniem nowoczesnego rentgenowskiego przenośnego analizatora naprężeń [Residual stress tests in industrial products with the use of a modern portable X-ray stress analyser]. Journal of Metallic Materials, 73(4), 18–21.
Szymański, W., Lech-Grega, M., Gawlik, M., Kokosza, A., & Chochorowski, A. (2015). Measurement of residual stresses in hot-rolled steel sheets for laser cutting. Computer Methods in Materials Science, 15(1), 251–257.
Tanaka, K. (2019). The cosα method for X-ray residual stress measurement using two-dimensional detector. Mechanical Engineering Reviews, 6(1), 18-00378. https://doi.org/10.1299/mer.18-00378
Tiitto, K. (1985). Measuring stresses in rolls by magnetoelastic method. Mechanical working & steel processing XXIII. Proceedings of the 27th Mechanical Working & Steel Processing Conference, Stouffer Inn on the Square, Cleveland, OH (pp. 273–279). Iron and Steel Society [unpublished].
Tiitto, K. (1989). Use of Barkhausen effect in testing for residual stresses and material defects. Non-Destructive Testing – Australia, 26(2), 36–41.
Withers, P. J., & Bhadeshia, H. K. D. H. (2001). Residual stress. Part 1 – Measurement techniques. Materials science and Technology, 17(4), 355–365. https://doi.org/10.1179/026708301101509980