Review of XAI methods for application in heavy industry

Review of XAI methods for application in heavy industry


Wojciech Jędrysik
, Piotr Hajder, Łukasz Rauch

AGH University of Krakow, Department of Applied Computer Science and Modelling, Krakow, Poland.

DOI:

https://doi.org/10.7494/cmms.2025.1.1013

Abstract:

In recent years, considerable progress has been made in the field of artificial intelligence and machine learning. This progress allows us to solve increasingly complex problems, but it also requires providing appropriate explanations to understand the actions taken by AI. For this purpose, research into the development of Explainable Artificial Intelligence has been initiated and interest in this topic is constantly growing. This review of XAI methods includes a justification for the need to introduce solutions to explain artificial intelligence models, describes the differences between various methods and presents example method/s that work in different cases. The purpose of this paper is to solve a real problem occurring in heavy industry. The third chapter describes the challenges to be faced, the solution developed and the results of the work. The entire study concludes with a summary of the research findings.

Cite as:

Jędrysik, W., Hajder, P., & Rauch, Ł. (2025). Review of XAI methods for application in heavy industry. Computer Methods in Materials Science, 25(1), 31–43. https://doi.org/10.7494/cmms.2025.1.1013

Article (PDF):

Keywords:

Explainable artificial intelligence, Machine learning, Heavy industry

References:

Ahmad Khan, M., Khan, M., Dawood, H., Dawood, H., & Daud, A. (2024). Secure Explainable-AI approach for brake faults prediction in heavy transport. IEEE Access,12, 114940–114950. https://doi.org/10.1109/ACCESS.2024.3444907

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE,10(7), e0130140. https://doi.org/10.1371/journal.pone.0130140

Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018). Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 839–847. https://doi.org/10.1109/WACV.2018.00097

Ciatto, G., Schumacher, M. I., Omicini, A., & Calvaresi, D. (2020). Agent-based explanations in AI: towards an abstract framework. In D. Calvaresi, A. Najjar, M. Winikoff, & K. Främling (Eds.), Lecture Notes in Computer Science: Vol. 12175. Explainable, Transparent Autonomous Agents and Multi-Agent Systems (pp. 3–20). Springer. https://doi.org/10.1007/978-3-030-51924-7_1

Craven, M. W., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks. In D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems 8 (pp. 24–30). MIT Press.

Elenberg, E. R., Dimakis, A. G., Feldman, M., & Karbasi, A. (2018). Streaming weak submodularity: interpreting neural networks on the fly. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 4047–4055). Curran Associates.

Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. In 2017 IEEE International Conference on Computer Vision (pp. 3429–3437). https://doi.org/10.1109/ICCV.2017.371

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics,2(3), 916–954. https://doi.org/10.1214/07-AOAS148

Gu, J., & Tresp, V. (2019). Contextual prediction difference analysis. ArXiv, arXiv:1910.09086. https://doi.org/10.48550/arXiv.1910.09086

Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local rule-based explanations of black box decision systems. ArXiv, arXiv:1805.10820. https://doi.org/10.48550/arXiv.1805.10820

Gulum, M. A., Trombley, Ch. M., & Kantardzic, M. (2021). A review of explainable deep learning cancer detection models in medical imaging. Applied Sciences,11(10), 4573. https://doi.org/10.3390/app11104573

Hall, P., Gill, N., Kurka, M., & Phan, W. (2024). Machine Learning Interpretability with H2O Driverless AI (A. Bartz, Ed.). H2O.ai.

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A review of YOLO algorithm developments. Procedia Computer Science,199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135

Kim, B., Khanna, R., & Koyejo, O. (2017). Examples are not enough, learn to criticize! Criticism for interpretability. In D. D. Lee, U. Von Luxburg, R. Garnett, M. Sugiyama, I. Guyon (Eds.), Advances in Neural Information Processing Systems 29 (pp. 2280–2288). Curran Associates.

Lundberg, S. M., & Lee, S.-I. (2018). A unified approach to interpreting model predictions. In U. Von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 4765–4774). Curran Associates.

Mothilal, R. K., Sharma, A., & Tan, Ch. (2020). Explaining machine learning classifiers through diverse counterfactual explanations. In FAT* ‘20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 607–617). https://doi.org/10.1145/3351095.3372850

Petsiuk, V., Das, A., & Saenko, K. (2018). RISE: Randomized Input Sampling for Explanation of black-box models. ArXiv, arXiv:1806.07421. https://doi.org/10.48550/arXiv.1806.07421

Plumb, G., Molitor, D., & Talwalkar, A. (2019). Model agnostic supervised local explanations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31 (pp. 2515–2524). Curran Associates.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the predictions of any classifier. In KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). https://doi.org/10.1145/2939672.2939778

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-Precision Model-Agnostic Explanations. Proceedings of the AAAI Conference on Artificial Intelligence,32(1), 1527–1535. https://doi.org/10.1609/aaai.v32i1.11491

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision,128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating activation differences. In D. Precup, Y. Whye Teh (Eds.), ICML’17: Proceedings of the 34th International Conference on Machine Learning (vol. 70, pp. 3145–3153).

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: visualising image classification models and saliency maps. ArXiv, arXiv:1312.6034. https://doi.org/10.48550/arXiv.1312.6034

Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). SmoothGrad: removing noise by adding noise. ArXiv, arXiv:1706.03825. https://doi.org/10.48550/arXiv.1706.03825

Sofianidis, G., Rožanec, J. M., Mladenić, D., & Kyriazis, D. (2021). A review of explainable artificial intelligence in manufacturing. ArXiv, arXiv:2107.02295. https://doi.org/10.48550/arXiv.2107.02295

Sokol, K., & Flach, P. (2024). LIMEtree: Consistent and faithful multi-class explanations. ArXiv, arXiv:2005.01427. https://doi.org/10.48550/arXiv.2005.01427

Soomro, S., Niaz, A., & Nam Choi, K. (2024). Grad++ScoreCAM: Enhancing visual explanations of deep convolutional networks using incremented gradient and score- weighted methods. IEEE Access,12, 61104–61112. https://doi.org/10.1109/ACCESS.2024.3392853

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: the all convolutional net. ArXiv, arXiv:1412.6806. https://doi.org/10.48550/arXiv.1412.6806

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In D. Precup, Y. Whye Teh (Eds.), ICML’17: Proceedings of the 34th International Conference on Machine Learning (vol. 70, pp. 3319–3328).  

Thanathamathee, P., Sawangarreerak, S., & Nizam, D. N. M. (2024). Enhancing going concern prediction with anchor explainable AI and attention-weighted XGBoost. IEEE Access,12, 68345–68363. https://doi.org/10.1109/ACCESS.2024.3401007

Thombre, A. (2024). Explainable AI (XAI): Using decision trees to explain neural network model. ResearchGate. https://www.researchgate.net/publication/383898176_Explainable_AI_XAI_Using_decision_trees_to_explain_neural_network_model

Ustun, B., Tracà, S., & Rudin, C. (2013). Supersparse linear integer models for interpretable classification. ArXiv, arXiv:1306.6677. https://doi.org/10.48550/arXiv.1306.6677

Vilone, G., & Longo, L. (2020). Explainable Artificial Intelligence: a systematic review. ArXiv, arXiv:2006.00093. https://doi.org/10.48550/arXiv.2006.00093

Waa, J., van der, Robeer, M., Diggelen, J., van, Brinkhuis, M., & Neerincx, M. (2018). Contrastive explanations with local foil trees. ArXiv, arXiv:1806.07470. https://doi.org/10.48550/arXiv.1806.07470

Zafar, M. R., & Khan, N. M. (2019). DLIME: A deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. ArXiv, arXiv:1906.10263. https://doi.org/10.48550/arXiv.1906.10263

Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding convolutional networks. ArXiv, arXiv:1311.2901. https://doi.org/10.48550/arXiv.1311.2901

Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2921–2929. https://doi.org/10.1109/CVPR.2016.319

Zintgraf, L. M., Cohen, T. S., Adel, T., & Welling, M. (2017). Visualising deep neural network decisions: prediction difference analysis. ArXiv, arXiv:1702.04595. https://doi.org/10.48550/arXiv.1702.04595