Review of XAI methods for application in heavy industry
Wojciech Jędrysik, Piotr Hajder
, Łukasz Rauch
AGH University of Krakow, Department of Applied Computer Science and Modelling, Krakow, Poland.
DOI:
https://doi.org/10.7494/cmms.2025.1.1013
Abstract:
In recent years, considerable progress has been made in the field of artificial intelligence and machine learning. This progress allows us to solve increasingly complex problems, but it also requires providing appropriate explanations to understand the actions taken by AI. For this purpose, research into the development of Explainable Artificial Intelligence has been initiated and interest in this topic is constantly growing. This review of XAI methods includes a justification for the need to introduce solutions to explain artificial intelligence models, describes the differences between various methods and presents example method/s that work in different cases. The purpose of this paper is to solve a real problem occurring in heavy industry. The third chapter describes the challenges to be faced, the solution developed and the results of the work. The entire study concludes with a summary of the research findings.
Cite as:
Jędrysik, W., Hajder, P., & Rauch, Ł. (2025). Review of XAI methods for application in heavy industry. Computer Methods in Materials Science, 25(1), 31–43. https://doi.org/10.7494/cmms.2025.1.1013
Article (PDF):

Keywords:
Explainable artificial intelligence, Machine learning, Heavy industry
References:
Ahmad Khan, M., Khan, M., Dawood, H., Dawood, H., & Daud, A. (2024). Secure Explainable-AI approach for brake faults prediction in heavy transport. IEEE Access,12, 114940–114950. https://doi.org/10.1109/ACCESS.2024.3444907
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE,10(7), e0130140. https://doi.org/10.1371/journal.pone.0130140
Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018). Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 839–847. https://doi.org/10.1109/WACV.2018.00097
Ciatto, G., Schumacher, M. I., Omicini, A., & Calvaresi, D. (2020). Agent-based explanations in AI: towards an abstract framework. In D. Calvaresi, A. Najjar, M. Winikoff, & K. Främling (Eds.), Lecture Notes in Computer Science: Vol. 12175. Explainable, Transparent Autonomous Agents and Multi-Agent Systems (pp. 3–20). Springer. https://doi.org/10.1007/978-3-030-51924-7_1
Craven, M. W., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks. In D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems 8 (pp. 24–30). MIT Press.
Elenberg, E. R., Dimakis, A. G., Feldman, M., & Karbasi, A. (2018). Streaming weak submodularity: interpreting neural networks on the fly. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 4047–4055). Curran Associates.
Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. In 2017 IEEE International Conference on Computer Vision (pp. 3429–3437). https://doi.org/10.1109/ICCV.2017.371
Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics,2(3), 916–954. https://doi.org/10.1214/07-AOAS148
Gu, J., & Tresp, V. (2019). Contextual prediction difference analysis. ArXiv, arXiv:1910.09086. https://doi.org/10.48550/arXiv.1910.09086
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local rule-based explanations of black box decision systems. ArXiv, arXiv:1805.10820. https://doi.org/10.48550/arXiv.1805.10820
Gulum, M. A., Trombley, Ch. M., & Kantardzic, M. (2021). A review of explainable deep learning cancer detection models in medical imaging. Applied Sciences,11(10), 4573. https://doi.org/10.3390/app11104573
Hall, P., Gill, N., Kurka, M., & Phan, W. (2024). Machine Learning Interpretability with H2O Driverless AI (A. Bartz, Ed.). H2O.ai.
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A review of YOLO algorithm developments. Procedia Computer Science,199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135
Kim, B., Khanna, R., & Koyejo, O. (2017). Examples are not enough, learn to criticize! Criticism for interpretability. In D. D. Lee, U. Von Luxburg, R. Garnett, M. Sugiyama, I. Guyon (Eds.), Advances in Neural Information Processing Systems 29 (pp. 2280–2288). Curran Associates.
Lundberg, S. M., & Lee, S.-I. (2018). A unified approach to interpreting model predictions. In U. Von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 4765–4774). Curran Associates.
Mothilal, R. K., Sharma, A., & Tan, Ch. (2020). Explaining machine learning classifiers through diverse counterfactual explanations. In FAT* ‘20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 607–617). https://doi.org/10.1145/3351095.3372850
Petsiuk, V., Das, A., & Saenko, K. (2018). RISE: Randomized Input Sampling for Explanation of black-box models. ArXiv, arXiv:1806.07421. https://doi.org/10.48550/arXiv.1806.07421
Plumb, G., Molitor, D., & Talwalkar, A. (2019). Model agnostic supervised local explanations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31 (pp. 2515–2524). Curran Associates.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the predictions of any classifier. In KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). https://doi.org/10.1145/2939672.2939778
Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-Precision Model-Agnostic Explanations. Proceedings of the AAAI Conference on Artificial Intelligence,32(1), 1527–1535. https://doi.org/10.1609/aaai.v32i1.11491
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision,128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7
Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating activation differences. In D. Precup, Y. Whye Teh (Eds.), ICML’17: Proceedings of the 34th International Conference on Machine Learning (vol. 70, pp. 3145–3153).
Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: visualising image classification models and saliency maps. ArXiv, arXiv:1312.6034. https://doi.org/10.48550/arXiv.1312.6034
Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). SmoothGrad: removing noise by adding noise. ArXiv, arXiv:1706.03825. https://doi.org/10.48550/arXiv.1706.03825
Sofianidis, G., Rožanec, J. M., Mladenić, D., & Kyriazis, D. (2021). A review of explainable artificial intelligence in manufacturing. ArXiv, arXiv:2107.02295. https://doi.org/10.48550/arXiv.2107.02295
Sokol, K., & Flach, P. (2024). LIMEtree: Consistent and faithful multi-class explanations. ArXiv, arXiv:2005.01427. https://doi.org/10.48550/arXiv.2005.01427
Soomro, S., Niaz, A., & Nam Choi, K. (2024). Grad++ScoreCAM: Enhancing visual explanations of deep convolutional networks using incremented gradient and score- weighted methods. IEEE Access,12, 61104–61112. https://doi.org/10.1109/ACCESS.2024.3392853
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: the all convolutional net. ArXiv, arXiv:1412.6806. https://doi.org/10.48550/arXiv.1412.6806
Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In D. Precup, Y. Whye Teh (Eds.), ICML’17: Proceedings of the 34th International Conference on Machine Learning (vol. 70, pp. 3319–3328).
Thanathamathee, P., Sawangarreerak, S., & Nizam, D. N. M. (2024). Enhancing going concern prediction with anchor explainable AI and attention-weighted XGBoost. IEEE Access,12, 68345–68363. https://doi.org/10.1109/ACCESS.2024.3401007
Thombre, A. (2024). Explainable AI (XAI): Using decision trees to explain neural network model. ResearchGate. https://www.researchgate.net/publication/383898176_Explainable_AI_XAI_Using_decision_trees_to_explain_neural_network_model
Ustun, B., Tracà, S., & Rudin, C. (2013). Supersparse linear integer models for interpretable classification. ArXiv, arXiv:1306.6677. https://doi.org/10.48550/arXiv.1306.6677
Vilone, G., & Longo, L. (2020). Explainable Artificial Intelligence: a systematic review. ArXiv, arXiv:2006.00093. https://doi.org/10.48550/arXiv.2006.00093
Waa, J., van der, Robeer, M., Diggelen, J., van, Brinkhuis, M., & Neerincx, M. (2018). Contrastive explanations with local foil trees. ArXiv, arXiv:1806.07470. https://doi.org/10.48550/arXiv.1806.07470
Zafar, M. R., & Khan, N. M. (2019). DLIME: A deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. ArXiv, arXiv:1906.10263. https://doi.org/10.48550/arXiv.1906.10263
Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding convolutional networks. ArXiv, arXiv:1311.2901. https://doi.org/10.48550/arXiv.1311.2901
Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2921–2929. https://doi.org/10.1109/CVPR.2016.319
Zintgraf, L. M., Cohen, T. S., Adel, T., & Welling, M. (2017). Visualising deep neural network decisions: prediction difference analysis. ArXiv, arXiv:1702.04595. https://doi.org/10.48550/arXiv.1702.04595