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Abstract
In recent years, considerable progress has been made in the field of artificial intelligence and machine learning. This progress 
allows us to solve increasingly complex problems, but it also requires providing appropriate explanations to understand the 
actions taken by AI. For this purpose, research into the development of Explainable Artificial Intelligence has been initiated 
and interest in this topic is constantly growing. This review of XAI methods includes a justification for the need to introduce 
solutions to explain artificial intelligence models, describes the differences between various methods and presents example 
methods that work in different cases. The purpose of this paper is to solve a real problem occurring in heavy industry. The third 
chapter describes the challenges to be faced, the solution developed and the results of the work. The entire study concludes 
with a summary of the research findings.
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1. Introduction

In recent years, there has been massive progress in the 
field of machine learning and artificial intelligence. 
With the increasing use of artificial intelligence, there 
is also a  growing need to understand the decisions 
it makes in order to gain more confidence in what it 
does and to obtain a  better understanding of its me-
chanics. Machine learning models such as deep neural 
networks are difficult to interpret because they rely on 
complex mathematical calculations which is why they 
are often called “black boxes”, when the input is giv-
en, their predictions are returned and the user does not 
even know on what basis the obtained result was cal-
culated. Such a situation limits a human’s understand-
ing of why a given model makes specific suggestions 
or decisions. 

The relationship between the effectiveness (com-
plexity) of an ML model and its interpretability is shown 
in Figure 1 (Ciatto et al., 2020).

Fig. 1. Relationship between the effectiveness (complexity) 
of an ML model and its interpretability (developed with 
reference to the research performed by Ciatto et al. (2020))

Therefore, recently there has been an increasing 
interest in XAI (Explainable Artificial Intelligence), 
i.e. AI (Artificial Intelligence) capable of explaining its 
decisions in a way that is understandable to humans. An 
example showing the difference between the traditional 
AI model and the XAI model is shown in Figure 2. 
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Fig. 2. Example showing the difference between the traditional AI model and the XAI model

1.1. Explainability vs interpretability

The explainability of AI models involves the possibility 
of using appropriate algorithms designed to give users 
insight into the mechanisms that artificial intelligence 
uses to obtain a result. Such techniques make it possible 
to explain AI decisions in a way that is understandable 
to humans. Interpretability, on the other hand, tells us to 
what extent the AI model itself is readable to humans, 
i.e. to what extent the user is able to understand how the 
model works, the criteria and principles influencing the 
result, by looking at the structure of this model. We can 
also talk about interpretability in the context of com-
bining an AI model and appropriate XAI techniques to 
assess how understandable and sufficient the generated 
explanations are for the target audience.

What is the motivation for explaining AI models’ 
decisions? Some sample aims are listed below:

	– acceptance from contemporary society;
	– better results of human cooperation with AI;
	– ensuring safety in critical areas such as medicine 

(diagnoses) or automotive (autonomous cars);
	– legal regulations;
	– debugging AI models;
	– human curiosity.

The development of AI can also bring many ben-
efits to heavy industry because the appropriate op-
timization of processes or increasing efficiency can 
significantly reduce the production costs of various 
products. Moreover, heavy industry is increasingly 
using advanced AI systems to monitor, control or op-
timize complex processes, but in the case of malfunc-

tion, it is difficult to identify the causes and understand 
why this happened.

In this paper, we will look at different methods for 
explaining AI models, starting with the presentation of 
other papers describing selected techniques, then some 
of them will be described in more detail with examples 
of their application. The next step will be to present 
an actual problem related to heavy industry, then the 
data on which it was based will be described, and the 
solution to the task and the results will be presented. In 
conclusion, it will be demonstrated that XAI represents 
the next stage in the evolution of artificial intelligence 
models, encompassing a diverse range of methodolo-
gies and proving its suitability for applications in heavy 
industry.

2. XAI methods

There are many XAI methods available, and this num-
ber is dictated by the variety of problems and AI mod-
els used to solve them. There is no single method that 
can explain the decisions made by each possible model 
in different ways, so new techniques continue to be de-
veloped to fill the gaps in this ever-evolving area.

2.1. Differences between XAI methods

XAI methods differ from each other in many aspects 
and can be divided in several ways. This division, along 
with examples, is presented in Table 1 (Sofianidis et al., 
2021; Vilone & Longo, 2020).
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Table 1. Division of XAI methods (Sofianidis et al., 2021; Vilone & Longo, 2020) along with three examples of each method type

XAI method type Examples
Type of input data

Numerical/categorical LIMETree (Sokol & Flach, 2024), Local Foil Trees (Waa et al., 2018), LoRE (Guidotti et al., 2018)

Pictorial All Convolutional Net (Springenberg et al., 2014), CAM (Zhou et al., 2016), GradCAM (Selvaraju 
et al., 2020)

Textual Integrated Gradients (Sundararajan et al., 2017), k-LIME (Hall et al., 2024), Layer Wise Relevance 
Propagation (Bach et al., 2015)

Time series DeepLIFT (Shrikumar et al., 2017), DICE (Mothilal et al., 2020), DLIME (Zafar & Khan, 2019)
Way of presenting explanations (output format)

Numerical Gradient (Simonyan et al., 2013), Gradient*Input (Shrikumar et al., 2017), MAPLE (Plumb et al., 
2019)

Rules LIMETree (Sokol & Flach, 2024), Local Foil Trees (Waa et al., 2018), LoRE (Guidotti et al., 2018)
Textual Anchors (Ribeiro et al., 2018), LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2018)

Visual Deconvolutional Networks (Zeiler & Fergus, 2013), GradCAM++ (Chattopadhay et al., 2018), 
RISE (Petsiuk et al., 2018)

Mixed Gradient (Simonyan et al., 2013), Gradient*Input (Shrikumar et al., 2017), Layer Wise Relevance 
Propagation (Bach et al., 2015)

Stage where explanations are generated in relation to the AI modeling process

Ante-hoc Decision Trees (Thombre, 2024), RuleFit (Friedman & Popescu, 2008), Supersparse Linear Integer 
Model (Ustun et al., 2013)

Post-hoc Anchors (Ribeiro et al., 2018), Meaningfull Perturbation (Fong & Vedaldi, 2017), GradCAM 
(Selvaraju et al., 2020)
Dependence on the AI model architecture (in case of post-hoc methods)

Model-agnostic k-LIME (Hall et al., 2024), LoRE (Guidotti et al., 2018), STREAK (Elenberg et al., 2018)
Model-specific CAM (Zhou et al., 2016), Smooth Grad (Smilkov et al., 2017), TREPAN (Craven & Shavlik, 1996)

Scope of explanations
Global MMD-critic (Kim et al., 2017), SHAP (Lundberg & Lee, 2018), TREPAN (Craven & Shavlik, 1996)

Local Meaningfull Perturbation (Fong & Vedaldi, 2017), Prediction Difference Analysis (Zintgraf et al., 
2017), Smooth Grad (Smilkov et al., 2017)

Problem type

Classification Contextual Prediction Difference Analysis (Gu & Tresp, 2019), Meaningfull Perturbation (Fong 
& Vedaldi, 2017), Smooth Grad (Smilkov et al., 2017)

Regression Gradient (Simonyan et al., 2013), Layer Wise Relevance Propagation (Bach et al., 2015), MAPLE 
(Plumb et al., 2019)

In the next subsections, two selected methods are 
described in detail: GradCAM and Anchors. The first one 
was chosen because it was used to solve the problem in 
the heavy industry described in the next chapter, while 
Anchors is a method that works in a completely differ-
ent way than GradCAM, which shows how diverse XAI 
methods can be in their approach to the problem and the 
way of working and presenting explanations. The moti-
vation was the desire to describe two very different meth-
ods, therefore on the one hand there is a method focused 
on a specific type of problem, in this case, a method used 
to explain the decisions of convolutional neural networks 
for image analysis, and, on the other hand, there is a more 
general method that can be used for different types of 
problems and AI models. Other methods that are popular 
and can be used in many cases are also briefly described.

2.2. GradCAM

GradCAM (Gradient-weighted Class Activation Map-
ping) is an XAI method that can be classified accord-
ing to the above criteria as one that uses visualization, 
showing the importance of individual features in the lo-
cal space, and we define it as model-specific due to the 
need to use an appropriate AI model for classification 
tasks and architecture based on convolutional layers 
(Selvaraju et al., 2020).

It is used to make explanations on images by gen-
erating and applying appropriate heat maps to them, 
which are intended to indicate those areas in the image 
that had the greatest impact on the obtained prediction 
result, which helps to understand the key features of the 
objects presented in the image.
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To use the GradCAM method, we need a previ-
ously trained classification model, and the entire oper-
ation of the algorithm can be presented in several steps 
(Selvaraju et al., 2020):

1.	 We pass a  specific image through a  previously 
trained model and obtain the prediction result.

2.	After receiving the results, loss gradients are 
calculated in relation to the feature maps cal-
culated in the last convolutional layer, which 
indicate how changes in pixel values in the fea-
ture maps affect the change in the prediction re-
sult for the resulting class (class selected by the 
model).

3.	 Global Average Pooling is performed to calculate 
the weighted average of the gradient, thus deter-
mining the weights for all feature maps for a given 
class.

4.	 The feature maps are multiplied by their corre-
sponding calculated weights. In this way, maps that 
are more relevant to predicting a given class have 
a greater impact on the resulting visualization.

5.	 The resulting weighted feature maps are summed 
along the channel/feature axes to form one activa-
tion map for the predicted class.

6.	 The ReLU activation function is applied to the re-
sulting map to remove negative values.

7.	The result of all previous operations is a  heat 
map that is superimposed on the input image, 
thus showing which areas of the image contrib-
uted most to classifying the image into a specific 
class.

A diagram presenting the operation of the described 
algorithm along with a shortened explanation in several 
steps is shown in Figure 3 (Selvaraju et al., 2020).

When receiving results from the model in the form 
of raw data, the Softmax function is used to normalize 
the set of real numbers in such a way that they can be 
interpreted as probabilities:
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GradCAM computes the prediction gradient rel-
ative to the last convolutional layer for each feature x 
for class y:
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where:
	 zy	 –	the final raw value (score) for class y  before 
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i, j	 – 	the activation value at position (i, j) on the fea-
ture map for channel (feature) x.

The whole is a gradient of the influence of activa-
tion on the result for a given class. After calculating the 
above formula for all points (i, j), a matrix A′ is created 
for feature x and class y, so in total we can have nf ·nc 
A′ matrices.

Each such matrix A′ is then subjected to Global 
Average Pooling to obtain a weight for each feature for 
class y. This value tells how much a given feature influ-
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where:
	 αx

y 	 –	 a weight determining the impact of the fea-
ture map Ax on the result for class y,

	H, W 	 –	 the spatial dimensions of the feature map,
	 A′i,j

x,y 	 –	 the value of the matrix A′ calculated using the 
gradient for feature x and class y  at point 
(i, j).

Finally, each calculated matrix A′ is multiplied by 
its weight α:

A′x,y ∙ αx
y (4)

In this way, specific features become more impor-
tant for a  given class. All weighted feature maps are 
summed and passed to the input of the ReLU function, 
which removes negative values that do not affect the 
visualization:
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where nf is the number of all features.

In this way, a heat map is calculated which, when 
applied to the input image, shows the key regions of 
the image that have the greatest impact on the decision 
made by the model.
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2.3. GradCAM in other papers

GradCAM is used in medicine because the heat map it 
generates, when superimposed on an image, e.g. a pho-
to of a given organ, helps to identify disease lesions in 
the human body, which facilitates the work of doctors 
when making a diagnosis and thus accelerates the de-
tection of abnormalities, which affects higher chances 
of recovery among patients.

The paper written by Gulum et al. (2021) discuss-
es the problem of cancer detection in medical images. 
The developed deep learning model copes well with 
the above-mentioned task, but in addition, a solution is 
needed that will present an explanation of the obtained 
results in a human-comprehensible way to increase the 
transparency of the so-called “black boxes” in order to 
increase trust among patients and doctors. The article 
distinguishes several categories of explanation meth-
ods depending on the aspects from which we look at 
the mechanisms of XAI methods. The authors then as-
sessed the quality of the explanations received. Such 
an analysis provided them with the necessary data to 
decide what techniques to use in specific cases and, for 
example, to locate tumor lesions in the brain or diagnose 
breast cancer, GradCAM was used as an XAI method, 
which is effective in marking key places in photos. 
Thanks to such auxiliary materials, it is easier for physi-
cians to make a diagnosis quickly and effectively, and to 
explain the problem and its causes to patients.

2.4. Anchors

The Anchors method is classified as a  method pre-
senting explanations in text form, showing key fea-
tures that influence the prediction result, it can operate 
locally and globally, and is model-agnostic (Ribeiro 
et al., 2018).

Anchors is a method that explains the model’s pre-
dictions in the form of the so-called “anchors”. Anchors 
are rules built from conditions, so they describe what 
conditions must be met for the model to make a specific 
decision. This method can be used on data types such as 
text or tabular data.

There are two algorithms for generating anchors 
(Ribeiro et al., 2018):

1.	 Identifying the Best Candidate for Greedy,
2.	 Outline of the Beam Search.

To use the Anchors technique, we need a  previ-
ously trained AI model, and the entire operation of the 
algorithm (Identifying the Best Candidate for Greedy) 
consists of the following steps (Ribeiro et al., 2018):

1.	 We pass a  specific instance (input data) through 
a  previously trained model for which we obtain 
a prediction.

2.	 The entire process of creating anchors is a  loop 
in which we go through the stage of generating 
candidates and selecting the best one during each 
iteration:
a)	 Candidate generation: involves creating combi-

nations of features and their values for a selected 
case. Each candidate is built from the so-called 
predicates (conditions to be met). At this stage, 
we iterate through the available predicates (not 
yet included in the current final anchor) and 
check whether the anchor from the previous it-
eration (in the case of the first iteration, we start 
from the empty set) in combination with the next 
predicate meets the specified coverage condi-
tion. If the condition is met, the new candidate 
moves to the next stage (selecting the best candi-
date), otherwise the candidate is rejected.

b)	Selecting the best candidate: In this step, the pre-
cision of each candidate is calculated and then 
the candidate with the best score is selected. Ac-
curate calculation of the precision of each can-
didate is very time-consuming and resource-
intensive, therefore, in order to correctly find 
the candidate with the highest precision while 
reducing computational costs, the so-called 
“multi-armed bandit problem” is used, which is 
based on probability distributions and estimation 
calculations. The candidate with the highest pre-
cision, if it meets the minimum precision condi-
tion, moves on, otherwise it is rejected.

3.	 If we managed to find the candidate with the high-
est precision with a value that meets the previous-
ly assumed minimum precision condition, we set 
it as the current final anchor and move with it to 
the next iteration.

4.	 The entire loop ends when the current iteration 
does not provide any candidate that meets all the 
requirements described above (the iteration re-
turns an empty set). The result of the algorithm 
and the final anchor is the anchor from the previ-
ous iteration. If no candidate was returned in the 
first iteration, it means that the algorithm did not 
find any anchor, i.e. solution (the described XAI 
method is not able to explain the result of the pre-
diction made by the AI model).

A  diagram presenting the operation of the de-
scribed algorithm is shown in Figure 4 (Ribeiro et al., 
2018). The comparison of precision and coverage is 
shown in Table 2 (Ribeiro et al., 2018).
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Table 2. Comparison of precision and coverage metrics used to find the best anchor candidate (Ribeiro et al., 2018)

Precision Coverage
It tells us how likely it is that the model’s predictions are 
unchanged under the conditions defined by the anchor

Refers to the proportion of data instances for which the 
anchor is applicable. It tells us how much of the data 
space is described by the anchor conditions, i.e., what is 
the probability that a randomly selected instance satisfies 
the anchor conditions

Precision
True positive

True positive False positive
�

�

�
� �

where: 
True positive – correctly predicted positive cases, 
False positive – incorrectly predicted positive cases

Coverage Total number of times therulewas applied
Total n

=
� � � � � � �

� uumber of positivecases� � �

High precision means that we can trust the anchor as a solid 
explanation for the set of instances

High coverage means the anchor can be applied to more 
instances, increasing its usefulness

In addition to the described Identifying the Best 
Candidate for Greedy algorithm, there is also an algo-
rithm based on searching multiple paths simultaneous-
ly (Outline of the Beam Search), the difference is that in 
each iteration, it tries to select more than one candidate, 
so you can analyze several solutions at the same time 
and finally select the anchor actually the best, because 
this algorithm helps to avoid local maxima, but at the 
cost of greater computational resource consumption 
(Ribeiro et al., 2018).

2.5. Anchors in other papers

The Anchors method is used, among others, in the fi-
nancial industry. In the paper written by Thanathamathee 
et al. (2024) the topic of improving the mechanism of 
forecasting the chance of continuation of the enterprise’s 
operations was discussed by using the XGBoost model 
with the attention mechanism in combination with the 
XAI Anchors method, which is able to generate under-
standable explanations regarding the predictions of the 
AI model. The financial analysis presented in the paper 
allows to better assess whether the company is able to 
continue its operations without the risk of bankruptcy. 
The authors of the paper think that traditional models 
often lose their ability to explain their predictions due 
to the high level of complexity of such a model, which 
results in a loss of trust among users. The introduction 
of XAI makes it possible to obtain more transparent 
forecasts, also highlighting key financial indicators that 
influence the forecast result.

2.6. Other XAI methods

There are many XAI methods, each with its own spe-
cial features and working well in specific applications 

or being more universal. Two methods have been de-
scribed in more detail, but it is also worth considering 
others, especially when the above two methods do not 
work in solving a specific problem. Very popular XAI 
methods are LIME and SHAP.

LIME (Local Interpretable Model-agnostic Expla-
nations) explains the predictions of complex models 
locally by building a simple model (e.g. linear regres-
sion) in the vicinity of the analyzed example. Its range 
of applications is wide, it can be used in combination 
with any AI model for classification tasks (it is model- 
agnostic) (Ribeiro et al., 2016).

SHAP (Shapley Additive Explanations) is a game- 
theoretic method that uses Shapley values to assign 
each feature a contribution to the model’s prediction. It 
explains individual forecasts and the overall operation 
of the model, indicating the features that have the great-
est impact on the results. This method is used for var-
ious high-complexity models, such as neural networks 
(Lundberg & Lee, 2018).

In the paper written by Ahmad Khan et al. (2024) 
the topic of using machine learning and XAI to pre-
dict failures of the braking system in trucks was 
discussed. The main goal is to develop a Predictive 
Maintenance method, which is necessary to prevent 
failures and improve the safety and efficiency of 
trucks. The XAI methods used are SHAP and LIME, 
and in addition to generating explanations under-
standable to users, one of the reasons for using XAI 
was also to reduce computational complexity while 
maintaining high model accuracy. The authors man-
aged to extract the 20 most important features out 
of 171, resulting in a significant simplification of the 
model and reducing training time while maintain-
ing a similar level of accuracy. This shows that XAI 
can not only serve as a tool to help understand how 
AI models work, but can also support the optimiza-
tion processes of these models. 
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3. Real problem and XAI solution

3.1. Problem description

A part of the case study was the problem of identi-
fying ladles in images from CCTV cameras in the 
electrosteel plant. A ladle is a specialized container 
in which molten steel is transported and processed. 
It is made of refractory material that allows the steel 
to safely maintain high temperatures during all pro-
cesses. Ladles must often be transported between 
different places in the electrosteel plant in order to 
go through subsequent stages of steel production, for 
this purpose special cranes are used on which the la-
dles can move.

There are many such ladles in the hall, they are at 
various stages of production and change their location 
from time to time, so it is important to properly monitor 
them to maintain control over them and the processes 
with which the ladles are related. There are also a lot of 
people doing their jobs in the workplace, so it is impor-
tant to maintain order and proper arrangement among 
the machines for their safety.

Due to the above, there was a need to introduce 
a  system for identifying all ladles in use by using 
CCTV cameras installed in the hall that continuous-
ly collect images of what is happening in the work-
place. Additionally, having an AI model used to iden-
tify objects, we can combine it with the appropriate 
XAI method, which will allow us to understand what 
criteria the model used when making identification, 
and show us the image fragments that are crucial for 
the AI model in recognizing ladles among others ob-
jects.

3.2. Industrial data

The data used to develop the solution are image snap-
shots from CCTV cameras showing various places in 
the hall from different perspectives. Examples of pic-
tures recorded by cameras and submitted for research 
are presented in Figure 5.

3.3. Solution

The implementation of the solution was divided into 
two steps: the first one concerns the identification of 
the ladles in the image, and the second one concerns the 
generation of heat maps explaining the detection results 
by indicating key fragments in the image.

3.3.1. Solution implementation, step 1: 
 ladles identification – YOLO v3

The YOLO (You Only Look Once) v3 model was used 
to identify ladles in the image, based on a neural network 
called Darknet-53, it uses three different scales to detect ob-
jects (small, medium and large objects), so it can be said that 
the model follows three paths simultaneously. In addition, 
YOLO v3 can detect many classes of objects at the same 
time assigning them appropriate labels and frames limiting 
the areas of these objects in the image (Jiang et al., 2022). 
This model is fast and accurate, making it very popular.

The construction of the used YOLO model starts 
from the input layer, then we go through the yolo_dark-
net layer, i.e. we use the Darknet-53 neural network. The 
next layers are the previously mentioned branches, which 
are responsible for detecting objects of a  certain size. 
Each path consists of the following layers: yolo_conv, 
yolo_output and yolo_boxes. Finally, all three paths con-
verge to the last layer of the YOLO model, yolo_nms.

a)   
 
b) 

 
Fig. 5. Pictures from CCTV cameras in the electrosteel plant of CMC Poland sp. z o.o. In the first one (a), two ladles are located 
in front of the camera on the right side of the image. In the second one (b), the view is presented from above, and two ladles are 

located on the other side of the room, approximately in the center of the image
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3.3.2. Solution implementation, step 2:  
prediction explanation – GradCAM

GradCAM was used as the XAI method, which is usually 
used for classification tasks, and here the situation is slight-
ly different, because the task of the mentioned XAI meth-
od is to explain what fragments in the image determined 
that the YOLO v3 model was able to identify ladles. In 
addition, the GradCAM method takes into account the last 
convolutional layer, and here the situation is more compli-
cated, because YOLO in its algorithm follows three paths 
at the same time, where each path is responsible for the 
detection of objects with different dimensions, therefore 
we are dealing with three parallel convolutional layers, so 
GradCAM had to be adapted to all three, then three iden-
tical images were juxtaposed, but with different heat maps 
superimposed on them, and the results were compared.

3.4. Results

The results show sample images recorded by CCTV 
cameras installed in the electrosteel plant hall compared 
to the same images after applying ladle detection using 

the YOLO v3 model and explaining the predictions by 
applying heat maps generated by the GradCAM meth-
od to the images (Tab. 3).

The YOLO model coped with the task of identi-
fying appropriate objects, did not miss any ladle, but it 
can be noticed that in both cases one ladle was identi-
fied twice, as evidenced by two frames superimposed 
on the same object. These frames have different dimen-
sions, which indicates that the dimensions of the ladle 
in the image were on the border of the two size scales 
distinguished by the YOLO model, i.e. two of the three 
paths the model followed when solving the problem 
identified the same object.

The GradCAM model generated heat maps for each 
of the three size scales considered by the YOLO model 
(Head Model 1 – small objects, Head Model 2 – medium- 
sized objects, Head Model 3 – large objects). We can do 
the most by analyzing the heat map for Head Model 2 –  
there we can notice that the model has started to recog-
nize the ladles by the numbers they were marked with 
to identify them in the hall. GradCAM also tells us that 
for the YOLO v3 model the identified ladles are rather 
medium-sized, as it is at this scale that the heat maps are 
clearest and point to the identified objects.

Table 3. Example results of the YOLO v3 model and the GradCAM method on input data in the form of camera images

Example 1 Example 2

Input image

Detection result 
(YOLO v3)

Explanation 
result 
(GradCAM)
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3.5. Use of an improved version of GradCAM – 
GradCAM++

GradCAM can, to some extent, generate a visual ex-
planation indicating those image elements that most 
influenced the detection result, but the marked areas 
on the ladles are small and not very clear (blurred), 

therefore, for comparison, an improved version of the 
XAI method was also used, i.e. GradCAM++. It can 
calculate first- and second-order gradients, which al-
lows it to capture more detailed location information 
and generate more precise heat maps (Soomro et al., 
2024). The comparison of the results is presented in 
Table 4.

Table 4. Comparison of GradCAM and GradCAM++ results

Example 1 Example 2

Detection result 
(YOLO v3)

Explanation 
result 
(GradCAM)

Explanation 
result 
(GradCAM++)

In the case of GradCAM++, Head Model 2 is 
still able to tell us the most, because the correspond-
ing convolutional layer is subject to greater activation 
than the others, while the generated heat maps are more 
extensive and detailed than in the case of the traditional 
GradCAM model.

4. Conclusions

XAI is another step forward towards the further develop-
ment of algorithms that make predictions related to a spe-
cific problem. The emphasis on the need to explain deci-
sions made by AI will increase our awareness of how these 
models work and what criteria they are guided by. There 
are many XAI methods which can be divided into differ-
ent categories depending on the aspect we look at, and 
which algorithm to choose depends on individual needs.

XAI, just like conventional AI, can be used in 
heavy industry; as it develops, it will cope better 

with current tasks and will be used in increasingly 
complex challenges. Using GradCAM to generate 
explanations of the identification results made by the 
YOLO v3 model gave satisfactory results, it helped 
to see the key places thanks to which the YOLO 
model could distinguish the ladles from other objects 
in the image, while using the improved GradCAM++ 
method gave even more accurate marking of these 
areas.

Further research should focus on finding other 
methods that would be able to extract other features 
crucial to understanding the performance of the YOLO 
model in this case.

Acknowledgement

The financial support of Polish National Centre for 
Research and Development project no. POIR.01.01.01-
00-0996/19 is acknowledged.



Computer Methods in Materials Science� 2025, vol. 25, no. 1

W. Jędrysik, P. Hajder, Ł. Rauch

42

References
Ahmad Khan, M., Khan, M., Dawood, H., Dawood, H., & Daud, A. (2024). Secure Explainable-AI approach for brake faults 

prediction in heavy transport. IEEE Access, 12, 114940–114950. https://doi.org/10.1109/ACCESS.2024.3444907 
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On pixel-wise explanations for non-linear 

classifier decisions by layer-wise relevance propagation. PLoS ONE, 10(7), e0130140. https://doi.org/10.1371/journal.
pone.0130140 

Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018). Grad-CAM++: generalized gradient-based 
visual explanations for deep convolutional networks. 2018 IEEE Winter Conference on Applications of Computer Vision 
(WACV), 839–847. https://doi.org/10.1109/WACV.2018.00097 

Ciatto, G., Schumacher, M. I., Omicini, A., & Calvaresi, D. (2020). Agent-based explanations in AI: towards an abstract frame-
work. In D. Calvaresi, A. Najjar, M. Winikoff, & K. Främling (Eds.), Lecture Notes in Computer Science: Vol. 12175. Ex-
plainable, Transparent Autonomous Agents and Multi-Agent Systems (pp. 3–20). Springer. https://doi.org/10.1007/978-
3-030-51924-7_1 

Craven, M. W., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks. In D. S. Touretzky, 
M. C. Mozer, M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems 8 (pp. 24–30). MIT Press.

Elenberg, E. R., Dimakis, A. G., Feldman, M., & Karbasi, A. (2018). Streaming weak submodularity: interpreting neural net-
works on the fly. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), 
Advances in Neural Information Processing Systems 30 (pp. 4047–4055). Curran Associates.

Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. In 2017 IEEE Inter-
national Conference on Computer Vision (pp. 3429–3437). https://doi.org/10.1109/ICCV.2017.371 

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics, 2(3), 
916–954. https://doi.org/10.1214/07-AOAS148 

Gu, J., & Tresp, V. (2019). Contextual prediction difference analysis. ArXiv, arXiv:1910.09086. https://doi.org/10.48550/arX-
iv.1910.09086 

Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local rule-based explanations of black 
box decision systems. ArXiv, arXiv:1805.10820. https://doi.org/10.48550/arXiv.1805.10820 

Gulum, M. A., Trombley, Ch. M., & Kantardzic, M. (2021). A review of explainable deep learning cancer detection models in 
medical imaging. Applied Sciences, 11(10), 4573. https://doi.org/10.3390/app11104573 

Hall, P., Gill, N., Kurka, M., & Phan, W. (2024). Machine Learning Interpretability with H2O Driverless AI (A. Bartz, Ed.). 
H2O.ai. 

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A review of YOLO algorithm developments. Procedia Computer Science, 
199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135 

Kim, B., Khanna, R., & Koyejo, O. (2017). Examples are not enough, learn to criticize! Criticism for interpretability. 
In D. D.  Lee, U. Von Luxburg, R. Garnett, M. Sugiyama, I. Guyon (Eds.), Advances in Neural Information Processing 
Systems 29 (pp. 2280–2288). Curran Associates. 

Lundberg, S. M., & Lee, S.-I. (2018). A unified approach to interpreting model predictions. In U. Von Luxburg, I. Guyon, 
S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing 
Systems 30 (pp. 4765–4774). Curran Associates. 

Mothilal, R. K., Sharma, A., & Tan, Ch. (2020). Explaining machine learning classifiers through diverse counterfactual expla-
nations. In FAT* ‘20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 607–617). 
https://doi.org/10.1145/3351095.3372850 

Petsiuk, V., Das, A., & Saenko, K. (2018). RISE: Randomized Input Sampling for Explanation of black-box models. ArXiv, 
arXiv:1806.07421. https://doi.org/10.48550/arXiv.1806.07421 

Plumb, G., Molitor, D., & Talwalkar, A. (2019). Model agnostic supervised local explanations. In S. Bengio, H. Wallach, 
H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31 
(pp. 2515–2524). Curran Associates. 

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I  trust you?”: Explaining the predictions of any classifier. 
In KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (pp. 1135–1144). https://doi.org/10.1145/2939672.2939778 

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-Precision Model-Agnostic Explanations. Proceedings of the 
AAAI Conference on Artificial Intelligence, 32(1), 1527–1535. https://doi.org/10.1609/aaai.v32i1.11491 

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: visual explanations from 
deep networks via gradient-based localization. International Journal of Computer Vision, 128(2), 336–359. https://doi.org/ 
10.1007/s11263-019-01228-7 

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating activation differences. 
In D. Precup, Y. Whye Teh (Eds.), ICML’17: Proceedings of the 34th International Conference on Machine Learning 
(vol. 70, pp. 3145–3153).

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: visualising image classification mod-
els and saliency maps. ArXiv, arXiv:1312.6034. https://doi.org/10.48550/arXiv.1312.6034 

Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). SmoothGrad: removing noise by adding noise. ArXiv, 
arXiv:1706.03825. https://doi.org/10.48550/arXiv.1706.03825 

Sofianidis, G., Rožanec, J. M., Mladenić, D., & Kyriazis, D. (2021). A review of explainable artificial intelligence in manufac-
turing. ArXiv, arXiv:2107.02295. https://doi.org/10.48550/arXiv.2107.02295 

https://doi.org/10.1109/ACCESS.2024.3444907
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1007/978-3-030-51924-7_1
https://doi.org/10.1007/978-3-030-51924-7_1
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.48550/arXiv.1910.09086
https://doi.org/10.48550/arXiv.1910.09086
https://doi.org/10.48550/arXiv.1805.10820
https://doi.org/10.3390/app11104573
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.48550/arXiv.1806.07421
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1609/aaai.v32i1.11491
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1706.03825
https://doi.org/10.48550/arXiv.2107.02295


Review of XAI methods for application in heavy industry

Sokol, K., & Flach, P. (2024). LIMEtree: Consistent and faithful multi-class explanations. ArXiv, arXiv:2005.01427. https://
doi.org/10.48550/arXiv.2005.01427 

Soomro, S., Niaz, A., & Nam Choi, K. (2024). Grad++ScoreCAM: Enhancing visual explanations of deep convolutional net-
works using incremented gradient and score-weighted methods. IEEE Access, 12, 61104–61112. https://doi.org/10.1109/
ACCESS.2024.3392853 

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: the all convolutional net. ArXiv, 
arXiv:1412.6806. https://doi.org/10.48550/arXiv.1412.6806 

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In D. Precup, Y. Whye Teh (Eds.), 
ICML’17: Proceedings of the 34th International Conference on Machine Learning (vol. 70, pp. 3319–3328). https://
dl.acm.org/doi/10.5555/3305890.3306024  

Thanathamathee, P., Sawangarreerak, S., & Nizam, D. N. M. (2024). Enhancing going concern prediction with anchor explaina-
ble AI and attention-weighted XGBoost. IEEE Access, 12, 68345–68363. https://doi.org/10.1109/ACCESS.2024.3401007 

Thombre, A. (2024). Explainable AI (XAI): Using decision trees to explain neural network model. ResearchGate. https://
www.researchgate.net/publication/383898176_Explainable_AI_XAI_Using_decision_trees_to_explain_neural_net-
work_model 

Ustun, B., Tracà, S., & Rudin, C. (2013). Supersparse linear integer models for interpretable classification. ArXiv, arXiv: 
1306.6677. https://doi.org/10.48550/arXiv.1306.6677 

Vilone, G., & Longo, L. (2020). Explainable Artificial Intelligence: a systematic review. ArXiv, arXiv:2006.00093. https://doi.
org/10.48550/arXiv.2006.00093 

Waa, J., van der, Robeer, M., Diggelen, J., van, Brinkhuis, M., & Neerincx, M. (2018). Contrastive explanations with local foil 
trees. ArXiv, arXiv:1806.07470. https://doi.org/10.48550/arXiv.1806.07470 

Zafar, M. R., & Khan, N. M. (2019). DLIME: A deterministic local interpretable model-agnostic explanations approach for 
computer-aided diagnosis systems. ArXiv, arXiv:1906.10263. https://doi.org/10.48550/arXiv.1906.10263 

Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding convolutional networks. ArXiv, arXiv:1311.2901. https://doi.org/ 
10.48550/arXiv.1311.2901 

Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localiza-
tion. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2921–2929. https://doi.org/10.1109/
CVPR.2016.319 

Zintgraf, L. M., Cohen, T. S., Adel, T., & Welling, M. (2017). Visualising deep neural network decisions: prediction difference 
analysis. ArXiv, arXiv:1702.04595. https://doi.org/10.48550/arXiv.1702.04595 

https://doi.org/10.48550/arXiv.2005.01427
https://doi.org/10.48550/arXiv.2005.01427
https://doi.org/10.1109/ACCESS.2024.3392853
https://doi.org/10.1109/ACCESS.2024.3392853
https://doi.org/10.48550/arXiv.1412.6806
https://dl.acm.org/doi/10.5555/3305890.3306024
https://dl.acm.org/doi/10.5555/3305890.3306024
https://doi.org/10.1109/ACCESS.2024.3401007
https://www.researchgate.net/publication/383898176_Explainable_AI_XAI_Using_decision_trees_to_explain_neural_network_model
https://www.researchgate.net/publication/383898176_Explainable_AI_XAI_Using_decision_trees_to_explain_neural_network_model
https://www.researchgate.net/publication/383898176_Explainable_AI_XAI_Using_decision_trees_to_explain_neural_network_model
https://doi.org/10.48550/arXiv.1306.6677
https://doi.org/10.48550/arXiv.2006.00093
https://doi.org/10.48550/arXiv.2006.00093
https://doi.org/10.48550/arXiv.1806.07470
https://doi.org/10.48550/arXiv.1906.10263
https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.48550/arXiv.1702.04595





