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Abstract

In recent years, considerable progress has been made in the field of artificial intelligence and machine learning. This progress
allows us to solve increasingly complex problems, but it also requires providing appropriate explanations to understand the
actions taken by Al For this purpose, research into the development of Explainable Artificial Intelligence has been initiated
and interest in this topic is constantly growing. This review of XAl methods includes a justification for the need to introduce
solutions to explain artificial intelligence models, describes the differences between various methods and presents example
methods that work in different cases. The purpose of this paper is to solve a real problem occurring in heavy industry. The third
chapter describes the challenges to be faced, the solution developed and the results of the work. The entire study concludes

with a summary of the research findings.
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1. Introduction

In recent years, there has been massive progress in the
field of machine learning and artificial intelligence.
With the increasing use of artificial intelligence, there
is also a growing need to understand the decisions
it makes in order to gain more confidence in what it
does and to obtain a better understanding of its me-
chanics. Machine learning models such as deep neural
networks are difficult to interpret because they rely on
complex mathematical calculations which is why they
are often called “black boxes”, when the input is giv-
en, their predictions are returned and the user does not
even know on what basis the obtained result was cal-
culated. Such a situation limits a human’s understand-
ing of why a given model makes specific suggestions
or decisions.

The relationship between the effectiveness (com-
plexity) of an ML model and its interpretability is shown
in Figure 1 (Ciatto et al., 2020).
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Fig. 1. Relationship between the effectiveness (complexity)
of an ML model and its interpretability (developed with
reference to the research performed by Ciatto et al. (2020))

Therefore, recently there has been an increasing
interest in XAI (Explainable Artificial Intelligence),
i.e. Al (Artificial Intelligence) capable of explaining its
decisions in a way that is understandable to humans. An
example showing the difference between the traditional
Al model and the XAI model is shown in Figure 2.
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1. Number of seats: 2
2. Transport type: air
3. Engine type: piston
4. Mass: 515 kg

Al
Prediction: Light aircraft

Why?

The value of the neuron in the final classification
layer, which is responsible for the ,Light aircraft”
category, was the highest (0.40233819).

009339775
040233819 —— | jght aircraft
001396117
020795192
0.15379561

0.12855536

XAl

Prediction: Light aircraft

Why?
Because:

«Light aircrafts mainly accommodate 2 to 4
people.

*A light aircraft is a type of airplane.

«Light aircrafts are powered by piston engines.
*The empty weight of a light aircraft usually does
not exceed 1000 kg.

Fig. 2. Example showing the difference between the traditional Al model and the XAI model

1.1. Explainability vs interpretability

The explainability of Al models involves the possibility
of using appropriate algorithms designed to give users
insight into the mechanisms that artificial intelligence
uses to obtain a result. Such techniques make it possible
to explain Al decisions in a way that is understandable
to humans. Interpretability, on the other hand, tells us to
what extent the AI model itself is readable to humans,
i.e. to what extent the user is able to understand how the
model works, the criteria and principles influencing the
result, by looking at the structure of this model. We can
also talk about interpretability in the context of com-
bining an Al model and appropriate XAl techniques to
assess how understandable and sufficient the generated
explanations are for the target audience.
What is the motivation for explaining Al models’

decisions? Some sample aims are listed below:

— acceptance from contemporary society;

— better results of human cooperation with Al;

— ensuring safety in critical areas such as medicine

(diagnoses) or automotive (autonomous cars);

— legal regulations;

— debugging Al models;

— human curiosity.

The development of Al can also bring many ben-
efits to heavy industry because the appropriate op-
timization of processes or increasing efficiency can
significantly reduce the production costs of various
products. Moreover, heavy industry is increasingly
using advanced Al systems to monitor, control or op-
timize complex processes, but in the case of malfunc-

tion, it is difficult to identify the causes and understand
why this happened.

In this paper, we will look at different methods for
explaining Al models, starting with the presentation of
other papers describing selected techniques, then some
of them will be described in more detail with examples
of their application. The next step will be to present
an actual problem related to heavy industry, then the
data on which it was based will be described, and the
solution to the task and the results will be presented. In
conclusion, it will be demonstrated that XAl represents
the next stage in the evolution of artificial intelligence
models, encompassing a diverse range of methodolo-
gies and proving its suitability for applications in heavy
industry.

2. XAI methods

There are many XAl methods available, and this num-
ber is dictated by the variety of problems and Al mod-
els used to solve them. There is no single method that
can explain the decisions made by each possible model
in different ways, so new techniques continue to be de-
veloped to fill the gaps in this ever-evolving area.

2.1. Differences between XAI methods

XAI methods differ from each other in many aspects
and can be divided in several ways. This division, along
with examples, is presented in Table 1 (Sofianidis et al.,
2021; Vilone & Longo, 2020).
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Table 1. Division of XAI methods (Sofianidis et al., 2021; Vilone & Longo, 2020) along with three examples of each method type

XAI method type |

Examples

Type of input data

Numerical/categorical

LIMETree (Sokol & Flach, 2024), Local Foil Trees (Waa et al., 2018), LoRE (Guidotti et al., 2018)

Pictorial et al., 2020)

All Convolutional Net (Springenberg et al., 2014), CAM (Zhou et al., 2016), GradCAM (Selvaraju

Textual Propagation (Bach et al., 2015)

Integrated Gradients (Sundararajan et al., 2017), k-LIME (Hall et al., 2024), Layer Wise Relevance

Time series

DeepLIFT (Shrikumar et al., 2017), DICE (Mothilal et al., 2020), DLIME (Zafar & Khan, 2019)

Way of presenting explanations (output format)

Gradient (Simonyan et al., 2013), Gradient*Input (Shrikumar et al., 2017), MAPLE (Plumb et al.,

(Selvaraju et al., 2020)

Numerical 2019)
Rules LIMETree (Sokol & Flach, 2024), Local Foil Trees (Waa et al., 2018), LoRE (Guidotti et al., 2018)
Textual Anchors (Ribeiro et al., 2018), LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2018)
Visual Deconvolutional Networks (Zeiler & Fergus, 2013), GradCAM++ (Chattopadhay et al., 2018),
RISE (Petsiuk et al., 2018)
. Gradient (Simonyan et al., 2013), Gradient*Input (Shrikumar et al., 2017), Layer Wise Relevance
Mixed .
Propagation (Bach et al., 2015)
Stage where explanations are generated in relation to the AI modeling process
Ante-hoe Decision Trees (Thombre, 2024), RuleFit (Friedman & Popescu, 2008), Supersparse Linear Integer
Model (Ustun et al., 2013)
Posi-hoc Anchors (Ribeiro et al., 2018), Meaningfull Perturbation (Fong & Vedaldi, 2017), GradCAM

Dependence on the AI model architecture (in case of post-hoc methods)

Model-agnostic

k-LIME (Hall et al., 2024), LoRE (Guidotti et al., 2018), STREAK (Elenberg et al., 2018)

Model-specific

CAM (Zhou et al., 2016), Smooth Grad (Smilkov et al., 2017), TREPAN (Craven & Shavlik, 1996)

Scope of explanations

(Plumb et al., 2019)

Global MMD-critic (Kim et al., 2017), SHAP (Lundberg & Lee, 2018), TREPAN (Craven & Shavlik, 1996)
Local Meaningfull Perturbation (Fong & Vedaldi, 2017), Prediction Difference Analysis (Zintgraf et al.,
2017), Smooth Grad (Smilkov et al., 2017)
Problem type
Classification Contextual Prediction Difference Analysis (Gu & Tresp, 2019), Meaningfull Perturbation (Fong
& Vedaldi, 2017), Smooth Grad (Smilkov et al., 2017)
Regression Gradient (Simonyan et al., 2013), Layer Wise Relevance Propagation (Bach et al., 2015), MAPLE

In the next subsections, two selected methods are
described in detail: GradCAM and Anchors. The first one
was chosen because it was used to solve the problem in
the heavy industry described in the next chapter, while
Anchors is a method that works in a completely differ-
ent way than GradCAM, which shows how diverse XAl
methods can be in their approach to the problem and the
way of working and presenting explanations. The moti-
vation was the desire to describe two very different meth-
ods, therefore on the one hand there is a method focused
on a specific type of problem, in this case, a method used
to explain the decisions of convolutional neural networks
for image analysis, and, on the other hand, there is a more
general method that can be used for different types of
problems and Al models. Other methods that are popular
and can be used in many cases are also briefly described.

2.2. GradCAM

GradCAM (Gradient-weighted Class Activation Map-
ping) is an XAl method that can be classified accord-
ing to the above criteria as one that uses visualization,
showing the importance of individual features in the lo-
cal space, and we define it as model-specific due to the
need to use an appropriate Al model for classification
tasks and architecture based on convolutional layers
(Selvaraju et al., 2020).

It is used to make explanations on images by gen-
erating and applying appropriate heat maps to them,
which are intended to indicate those areas in the image
that had the greatest impact on the obtained prediction
result, which helps to understand the key features of the
objects presented in the image.

2025, vol. 25, no. 1
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To use the GradCAM method, we need a previ-
ously trained classification model, and the entire oper-
ation of the algorithm can be presented in several steps
(Selvaraju et al., 2020):

1. We pass a specific image through a previously
trained model and obtain the prediction result.

2. After receiving the results, loss gradients are
calculated in relation to the feature maps cal-
culated in the last convolutional layer, which
indicate how changes in pixel values in the fea-
ture maps affect the change in the prediction re-
sult for the resulting class (class selected by the
model).

3. Global Average Pooling is performed to calculate
the weighted average of the gradient, thus deter-
mining the weights for all feature maps for a given
class.

4. The feature maps are multiplied by their corre-
sponding calculated weights. In this way, maps that
are more relevant to predicting a given class have
a greater impact on the resulting visualization.

5. The resulting weighted feature maps are summed
along the channel/feature axes to form one activa-
tion map for the predicted class.

6. The ReLU activation function is applied to the re-
sulting map to remove negative values.

7. The result of all previous operations is a heat
map that is superimposed on the input image,
thus showing which areas of the image contrib-
uted most to classifying the image into a specific
class.

A diagram presenting the operation of the described
algorithm along with a shortened explanation in several
steps is shown in Figure 3 (Selvaraju et al., 2020).

When receiving results from the model in the form
of raw data, the Softmax function is used to normalize
the set of real numbers in such a way that they can be
interpreted as probabilities:

$, (1)

where:
o(Z )y — the result of the Softmax function for the val-
ue included in the vector Z corresponding to
class y,
e — the exponent of the z value, i.e. the z value

(score) for class y,

— the sum of the exponential values of all input
elements for the Softmax function (all com-
ponents of the vector Z corresponding to all
classes taken into account).

GradCAM computes the prediction gradient rel-
ative to the last convolutional layer for each feature x
for class y:

oz,
o, @
where:
z, — the final raw value (score) for class y before
Softmax,

A’jj — the activation value at position (Z, j) on the fea-
ture map for channel (feature) x.

The whole is a gradient of the influence of activa-
tion on the result for a given class. After calculating the
above formula for all points (7, /), a matrix 4" is created
for feature x and class y, so in total we can have n,n,
A' matrices.

Each such matrix 4’ is then subjected to Global
Average Pooling to obtain a weight for each feature for
class y. This value tells how much a given feature influ-

ences the model’s decision:

. 1 H W A,x’y
= S g
i=1 j=

where:
a’ — a weight determining the impact of the fea-
ture map A4* on the result for class y,
H, W — the spatial dimensions of the feature map,
A 'i’;:-" — the value of the matrix 4’ calculated using the
gradient for feature x and class y at point

(@)

Finally, each calculated matrix A’ is multiplied by
its weight o

Ao 4)

In this way, specific features become more impor-
tant for a given class. All weighted feature maps are
summed and passed to the input of the ReLU function,
which removes negative values that do not affect the
visualization:

"
ReLU[ZO(iA'X"Vj (5)

x=1
where n ’ is the number of all features.

In this way, a heat map is calculated which, when
applied to the input image, shows the key regions of
the image that have the greatest impact on the decision
made by the model.
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2.3. GradCAM in other papers

GradCAM is used in medicine because the heat map it
generates, when superimposed on an image, e.g. a pho-
to of a given organ, helps to identify disease lesions in
the human body, which facilitates the work of doctors
when making a diagnosis and thus accelerates the de-
tection of abnormalities, which affects higher chances
of recovery among patients.

The paper written by Gulum et al. (2021) discuss-
es the problem of cancer detection in medical images.
The developed deep learning model copes well with
the above-mentioned task, but in addition, a solution is
needed that will present an explanation of the obtained
results in a human-comprehensible way to increase the
transparency of the so-called “black boxes” in order to
increase trust among patients and doctors. The article
distinguishes several categories of explanation meth-
ods depending on the aspects from which we look at
the mechanisms of XAl methods. The authors then as-
sessed the quality of the explanations received. Such
an analysis provided them with the necessary data to
decide what techniques to use in specific cases and, for
example, to locate tumor lesions in the brain or diagnose
breast cancer, GradCAM was used as an XAl method,
which is effective in marking key places in photos.
Thanks to such auxiliary materials, it is easier for physi-
cians to make a diagnosis quickly and effectively, and to
explain the problem and its causes to patients.

2.4. Anchors

The Anchors method is classified as a method pre-
senting explanations in text form, showing key fea-
tures that influence the prediction result, it can operate
locally and globally, and is model-agnostic (Ribeiro
etal., 2018).

Anchors is a method that explains the model’s pre-
dictions in the form of the so-called “anchors”. Anchors
are rules built from conditions, so they describe what
conditions must be met for the model to make a specific
decision. This method can be used on data types such as
text or tabular data.

There are two algorithms for generating anchors
(Ribeiro et al., 2018):

1. Identifying the Best Candidate for Greedy,
2. Outline of the Beam Search.

To use the Anchors technique, we need a previ-
ously trained Al model, and the entire operation of the
algorithm (Identifying the Best Candidate for Greedy)
consists of the following steps (Ribeiro et al., 2018):

1. We pass a specific instance (input data) through
a previously trained model for which we obtain
a prediction.

2. The entire process of creating anchors is a loop
in which we go through the stage of generating
candidates and selecting the best one during each
iteration:

a) Candidate generation: involves creating combi-
nations of features and their values for a selected
case. Each candidate is built from the so-called
predicates (conditions to be met). At this stage,
we iterate through the available predicates (not
yet included in the current final anchor) and
check whether the anchor from the previous it-
eration (in the case of the first iteration, we start
from the empty set) in combination with the next
predicate meets the specified coverage condi-
tion. If the condition is met, the new candidate
moves to the next stage (selecting the best candi-
date), otherwise the candidate is rejected.

b) Selecting the best candidate: In this step, the pre-
cision of each candidate is calculated and then
the candidate with the best score is selected. Ac-
curate calculation of the precision of each can-
didate is very time-consuming and resource-
intensive, therefore, in order to correctly find
the candidate with the highest precision while
reducing computational costs, the so-called
“multi-armed bandit problem” is used, which is
based on probability distributions and estimation
calculations. The candidate with the highest pre-
cision, if it meets the minimum precision condi-
tion, moves on, otherwise it is rejected.

3. If we managed to find the candidate with the high-
est precision with a value that meets the previous-
ly assumed minimum precision condition, we set
it as the current final anchor and move with it to
the next iteration.

4. The entire loop ends when the current iteration
does not provide any candidate that meets all the
requirements described above (the iteration re-
turns an empty set). The result of the algorithm
and the final anchor is the anchor from the previ-
ous iteration. If no candidate was returned in the
first iteration, it means that the algorithm did not
find any anchor, i.e. solution (the described XAI
method is not able to explain the result of the pre-
diction made by the AI model).

A diagram presenting the operation of the de-
scribed algorithm is shown in Figure 4 (Ribeiro et al.,
2018). The comparison of precision and coverage is
shown in Table 2 (Ribeiro et al., 2018).
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Table 2. Comparison of precision and coverage metrics used to find the best anchor candidate (Ribeiro et al., 2018)

Precision

Coverage

It tells us how likely it is that the model’s predictions are
unchanged under the conditions defined by the anchor

Refers to the proportion of data instances for which the
anchor is applicable. It tells us how much of the data
space is described by the anchor conditions, i.e., what is
the probability that a randomly selected instance satisfies
the anchor conditions

True positive

Precision =
True positive + False positive

where:

True positive — correctly predicted positive cases,

False positive — incorrectly predicted positive cases

Total number of times the rule was applied

Coverage = —
Total number of positive cases

High precision means that we can trust the anchor as a solid
explanation for the set of instances

High coverage means the anchor can be applied to more
instances, increasing its usefulness

In addition to the described Identifying the Best
Candidate for Greedy algorithm, there is also an algo-
rithm based on searching multiple paths simultaneous-
ly (Outline of the Beam Search), the difference is that in
each iteration, it tries to select more than one candidate,
so you can analyze several solutions at the same time
and finally select the anchor actually the best, because
this algorithm helps to avoid local maxima, but at the
cost of greater computational resource consumption
(Ribeiro et al., 2018).

2.5. Anchors in other papers

The Anchors method is used, among others, in the fi-
nancial industry. In the paper written by Thanathamathee
et al. (2024) the topic of improving the mechanism of
forecasting the chance of continuation of the enterprise’s
operations was discussed by using the XGBoost model
with the attention mechanism in combination with the
XAI Anchors method, which is able to generate under-
standable explanations regarding the predictions of the
Al model. The financial analysis presented in the paper
allows to better assess whether the company is able to
continue its operations without the risk of bankruptcy.
The authors of the paper think that traditional models
often lose their ability to explain their predictions due
to the high level of complexity of such a model, which
results in a loss of trust among users. The introduction
of XAI makes it possible to obtain more transparent
forecasts, also highlighting key financial indicators that
influence the forecast result.

2.6. Other XAI methods

There are many XAI methods, each with its own spe-
cial features and working well in specific applications

or being more universal. Two methods have been de-
scribed in more detail, but it is also worth considering
others, especially when the above two methods do not
work in solving a specific problem. Very popular XAI
methods are LIME and SHAP.

LIME (Local Interpretable Model-agnostic Expla-
nations) explains the predictions of complex models
locally by building a simple model (e.g. linear regres-
sion) in the vicinity of the analyzed example. Its range
of applications is wide, it can be used in combination
with any Al model for classification tasks (it is model-
agnostic) (Ribeiro et al., 2016).

SHAP (Shapley Additive Explanations) is a game-
theoretic method that uses Shapley values to assign
each feature a contribution to the model’s prediction. It
explains individual forecasts and the overall operation
of the model, indicating the features that have the great-
est impact on the results. This method is used for var-
ious high-complexity models, such as neural networks
(Lundberg & Lee, 2018).

In the paper written by Ahmad Khan et al. (2024)
the topic of using machine learning and XAI to pre-
dict failures of the braking system in trucks was
discussed. The main goal is to develop a Predictive
Maintenance method, which is necessary to prevent
failures and improve the safety and efficiency of
trucks. The XAI methods used are SHAP and LIME,
and in addition to generating explanations under-
standable to users, one of the reasons for using XAl
was also to reduce computational complexity while
maintaining high model accuracy. The authors man-
aged to extract the 20 most important features out
of 171, resulting in a significant simplification of the
model and reducing training time while maintain-
ing a similar level of accuracy. This shows that XAl
can not only serve as a tool to help understand how
Al models work, but can also support the optimiza-
tion processes of these models.
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3. Real problem and XAI solution

3.1. Problem description

A part of the case study was the problem of identi-
fying ladles in images from CCTV cameras in the
electrosteel plant. A ladle is a specialized container
in which molten steel is transported and processed.
It is made of refractory material that allows the steel
to safely maintain high temperatures during all pro-
cesses. Ladles must often be transported between
different places in the electrosteel plant in order to
go through subsequent stages of steel production, for
this purpose special cranes are used on which the la-
dles can move.

There are many such ladles in the hall, they are at
various stages of production and change their location
from time to time, so it is important to properly monitor
them to maintain control over them and the processes
with which the ladles are related. There are also a lot of
people doing their jobs in the workplace, so it is impor-
tant to maintain order and proper arrangement among
the machines for their safety.

Due to the above, there was a need to introduce
a system for identifying all ladles in use by using
CCTYV cameras installed in the hall that continuous-
ly collect images of what is happening in the work-
place. Additionally, having an Al model used to iden-
tify objects, we can combine it with the appropriate
XAI method, which will allow us to understand what
criteria the model used when making identification,
and show us the image fragments that are crucial for
the AI model in recognizing ladles among others ob-
jects.

3.2. Industrial data

The data used to develop the solution are image snap-
shots from CCTV cameras showing various places in
the hall from different perspectives. Examples of pic-
tures recorded by cameras and submitted for research
are presented in Figure 5.

3.3. Solution

The implementation of the solution was divided into
two steps: the first one concerns the identification of
the ladles in the image, and the second one concerns the
generation of heat maps explaining the detection results
by indicating key fragments in the image.

3.3.1. Solution implementation, step 1:
ladles identification — YOLO v3

The YOLO (You Only Look Once) v3 model was used
to identify ladles in the image, based on a neural network
called Darknet-53, it uses three different scales to detect ob-
jects (small, medium and large objects), so it can be said that
the model follows three paths simultaneously. In addition,
YOLO v3 can detect many classes of objects at the same
time assigning them appropriate labels and frames limiting
the areas of these objects in the image (Jiang et al., 2022).
This model is fast and accurate, making it very popular.

The construction of the used YOLO model starts
from the input layer, then we go through the yolo _dark-
net layer, i.e. we use the Darknet-53 neural network. The
next layers are the previously mentioned branches, which
are responsible for detecting objects of a certain size.
Each path consists of the following layers: yolo conv,
yolo_output and yolo_boxes. Finally, all three paths con-
verge to the last layer of the YOLO model, yolo nms.

Fig. 5. Pictures from CCTV cameras in the electrosteel plant of CMC Poland sp. z 0.0. In the first one (a), two ladles are located
in front of the camera on the right side of the image. In the second one (b), the view is presented from above, and two ladles are
located on the other side of the room, approximately in the center of the image
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3.3.2. Solution implementation, step 2:
prediction explanation — GradCAM

GradCAM was used as the XAI method, which is usually
used for classification tasks, and here the situation is slight-
ly different, because the task of the mentioned XAI meth-
od is to explain what fragments in the image determined
that the YOLO v3 model was able to identify ladles. In
addition, the GradCAM method takes into account the last
convolutional layer, and here the situation is more compli-
cated, because YOLO in its algorithm follows three paths
at the same time, where each path is responsible for the
detection of objects with different dimensions, therefore
we are dealing with three parallel convolutional layers, so
GradCAM had to be adapted to all three, then three iden-
tical images were juxtaposed, but with different heat maps
superimposed on them, and the results were compared.

3.4. Results

The results show sample images recorded by CCTV
cameras installed in the electrosteel plant hall compared
to the same images after applying ladle detection using

the YOLO v3 model and explaining the predictions by
applying heat maps generated by the GradCAM meth-
od to the images (Tab. 3).

The YOLO model coped with the task of identi-
fying appropriate objects, did not miss any ladle, but it
can be noticed that in both cases one ladle was identi-
fied twice, as evidenced by two frames superimposed
on the same object. These frames have different dimen-
sions, which indicates that the dimensions of the ladle
in the image were on the border of the two size scales
distinguished by the YOLO model, i.e. two of the three
paths the model followed when solving the problem
identified the same object.

The GradCAM model generated heat maps for each
of the three size scales considered by the YOLO model
(Head Model 1 —small objects, Head Model 2 — medium-
sized objects, Head Model 3 — large objects). We can do
the most by analyzing the heat map for Head Model 2 —
there we can notice that the model has started to recog-
nize the ladles by the numbers they were marked with
to identify them in the hall. GradCAM also tells us that
for the YOLO v3 model the identified ladles are rather
medium-sized, as it is at this scale that the heat maps are
clearest and point to the identified objects.

Table 3. Example results of the YOLO v3 model and the GradCAM method on input data in the form of camera images

Example 1

Example 2

Input image

Detection result
(YOLO v3)

Explanation
result
(GradCAM)

YOLOv3 Head Model 1

YOLOv3 Head Model 2 YOLOv3 Head Model 3

YOLOV3 Head Model 1 YOLOV3 Head Model 2 YOLOv3 Head Model 3
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3.5. Use of an improved version of GradCAM —
GradCAM++

GradCAM can, to some extent, generate a visual ex-
planation indicating those image elements that most
influenced the detection result, but the marked areas
on the ladles are small and not very clear (blurred),

therefore, for comparison, an improved version of the
XAI method was also used, i.e. GradCAM++. It can
calculate first- and second-order gradients, which al-
lows it to capture more detailed location information
and generate more precise heat maps (Soomro et al.,
2024). The comparison of the results is presented in
Table 4.

Table 4. Comparison of GradCAM and GradCAM-++ results

Example 1

Example 2

Detection result
(YOLO v3)

Explanation
result
(GradCAM)

YOLOv3 Head Model 2

YOLOV3 Head Model 1

YOLOv3 Head Model 3

YOLOv3 Head Model 1 YOLOV3 Head Model 2 YOLOv3 Head Model 3

Explanation
result
(GradCAM++)

YOLOV3 Head Model 2

YOLOV3 Head Model 1

YOLOv3 Head Model 3

YOLOv3 Head Model 1 YOLOv3 Head Model 2 YOLOV3 Head Model 3

In the case of GradCAM++, Head Model 2 is
still able to tell us the most, because the correspond-
ing convolutional layer is subject to greater activation
than the others, while the generated heat maps are more
extensive and detailed than in the case of the traditional
GradCAM model.

4. Conclusions

XAl is another step forward towards the further develop-
ment of algorithms that make predictions related to a spe-
cific problem. The emphasis on the need to explain deci-
sions made by Al will increase our awareness of how these
models work and what criteria they are guided by. There
are many XAI methods which can be divided into differ-
ent categories depending on the aspect we look at, and
which algorithm to choose depends on individual needs.

XAl just like conventional Al, can be used in
heavy industry; as it develops, it will cope better

with current tasks and will be used in increasingly
complex challenges. Using GradCAM to generate
explanations of the identification results made by the
YOLO v3 model gave satisfactory results, it helped
to see the key places thanks to which the YOLO
model could distinguish the ladles from other objects
in the image, while using the improved GradCAM++
method gave even more accurate marking of these
areas.

Further research should focus on finding other
methods that would be able to extract other features
crucial to understanding the performance of the YOLO
model in this case.
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