Multi-scale modeling of deposition and re-sputtering of NixTi1-x thin film in a magnetron sputtering chamber

Multi-scale modeling of deposition and re-sputtering of NixTi1-x thin film in a magnetron sputtering chamber

Aniruddha Dey1, Shampa Aich2, Sudipto Ghosh3, S.S. Mohapatra4, A. Kumar5, Ajit Behera6

1Tata steel, Jamshedpur-831001, India.

2Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur-721302, India..

3Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, India.

4Department of Chemical Engineering, Indian institute of technology, Dhanbad-826004, India.

5Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela-769008, India.

DOI:

https://doi.org/10.7494/cmms.2017.3.0606

Abstract:

Deposition and re-sputtering of Ni-Ti thin films by magnetron sputtering was simulated using a multi-scale modeling approach. The sputtering of Ni and Ti targets and the transport of sputtered Ni and Ti atoms through the background gas were simulated using a Monte-Carlo approach, while the deposition of the sputtered atom onto the film surface was analyzed using molecular dynamics. The interaction of Ar+ ions with the deposited film under the influence of substrate bias was also simulated using a Monte-Carlo approach. The distribution of sputtered atoms over the substrate and the fraction of total sputtered atoms from Ni and Ti targets that reached the substrate were calculated for an off centred target which made an angle of 30° with the substrate. The effects of target voltage and gas temperature on the distribution of sputtered atom over substrate were studied with the help of the aforesaid simulations. It was observed that with increasing target voltage, the fraction of sputtered atoms reaching the substrate was increased slightly for a pure Ni target, while it showed very little change for a pure Ti target. With increasing gas temperature, the value for the same decreased initially, but increased beyond a critical temperature. The velocities of incident Ni and Ti atoms on the substrate were calculated and it was found that no intrinsic re-sputtering could take place for a Ni0.5Ti0.5 thin film under the simulated conditions. The fraction of deposited atoms that were re-sputtered by Ar+ ions under varying substrate bias was also calculated and was found to increase substantially with the increase in the magnitude of the substrate bias voltage. Finally, the stability of crystalline and amorphous Ni and Ti were estimated on the basis of fraction of atoms re-sputtered using a classical molecular dynamics approach.

Cite as:

Dey, A., Aich, S., Ghosh, S., Mohapatra, S., Kumar, A., Behera, A. (2017). Multi-scale modeling of deposition and re-sputtering of NixTi1-x thin film in a magnetron sputtering chamber. Computer Methods in Materials Science, 17(3), 156 – 168. https://doi.org/10.7494/cmms.2017.3.0606

Article (PDF):

Keywords:

NiTi, Sputtering, Re-sputtering, Multiscale modelling, Thin films

References:

Abhilash, V., Sumesh, M. A., Mohan, S., 2005, Compositionanalysis of NiTi thin films sputtered from a mosaic target:synthesis and simulation, Smart Mat. Struct., 14,323-328.

Barry, P. R., Philipp, P., Wirtza, T., Kieffer, J., 2014, Mechanismsof silicon sputtering and cluster formation explainedby atomic level simulations, J. Mass Spectrom,49, 185-194.

Biersack, J. P., Eckstein, W., 1984, Sputtering studies with theMonte Carlo Program TRIM.SP, J. Appl. Phys. A, 34,73-94.

Britun, N., Han, J. G., Oh, S. G., 2008, Velocity distribution ofneutral species during magnetron sputtering by Fabry–Perot interferometry, Appl. Phys. Lett., 92, 141503,DOI:10.1063/1.2907505.

Britun, N., Palmucci, M., Snyders, R., 2011, Fast relaxation ofthe velocity distribution function of neutral and ionizedspecies in high-power impulse magnetron sputtering,Appl. Phys. Lett., 99, 131504.

Britun, N., Palmucci, M., Snyders, R., 2011, Fast relaxation ofthe velocity distribution function of neutral and ionizedspecies in high-power impulse magnetron sputtering,Appl. Phys. Lett., 99, 131504. DOI:10.1063/1.3644989.

Burow, J., Prokofiev, E., Somsen, C., Frenzel, J., Valiev, R. Z.,Eggeler, G., 2008, Martensitic transformations and functionalstability in ultra-fine grained NiTi shape memoryalloys, Materials Science Forum, 584, 852.

Burow, J., Prokofiev, E., Somsen, C., Frenzel, J.,. Valiev, R. Z,Eggeler, G., 2008, Martensitic Transformations andFunctional Stability in Ultra-Fine Grained NiTi ShapeMemory Alloys, Materials Science Forum, 584-586,852-857.

Eckstein, W., Hackel, S., Heinemann, D., Fricke, B., 1992,Influence of the interaction potential on simulated sputteringand reflection data, Z. Phys. D, Atoms, Moleculesand Clusters, 24, 171-176.

Eisenmenger-Sittner, C., Beyer Knecht, R., Bergauer, A., Bauer,W., Betz, G., 1995, Angular distribution of sputteredneutrals in a post magnetron geometry: Measurementand Monte Carlo simulation, Journal of Vacuum Science& Technology A: Vacuum, Surfaces, and Films, 13,2435-2443.

Eswar Raju, K. S., Bysakh, S., Sumesh, M. A., Kamat, S. V.,Mohan, S., 2008, The effect of ageing on microstructureand nanoindentation behaviour of dc magnetron sputterdeposited nickel rich NiTi films, Mat. Sci. Eng. A, 476,267-273.

Fu, Y. Q., Huang, W. M., Du, H. J., Huang, X., Tan, J. P., Gao,X. Y., 2001, Characterization of TiNi shape-memory alloythin films for MEMS applications, Surf. Coat. Technol.,145, 107-112.

Fua, Y., Du, H., Huang, W., Zhang, S., Hu, M., 2004, TiNibasedthin films in MEMS applications: a review, Sens.Actua. A, 112, 395-408.

Goldstein, H., 1950, Classical Mechanics, Addisen WesleyPublishing Co, 3rd ed.Gregoire, J. M., Lobovsky, M. B., Heinz, M. F., DiSalvo, F. J.,van Dover, R. B., 2007, Resputtering phenomena anddetermination of composition in codeposited films, Phy.Rev. B, 76, 195437, DOI: 10.1103/Phys RevB.76.195437.

Habijan, T., DeMiranda, R. L., Zamponi, C., Quandt, E., Greulich,C., Schildhauer, T. A., Koller, M., 2012, The biocompatibilityand mechanical properties of cylindricalNiTi thin films produced by magnetron sputtering, Mat.Sci. Eng. C, 32, 2523-2528.

Kok, M., Dagdelen, F., Aydoğdu, A., Aydogdu, Y., 2016, Thechange of transformation temperature on NiTi shapememory alloy by pressure and thermal ageing, Journalof Physics: Conference Series, 9th International Conferenceon Magnetic and Superconducting Materials(MSM15), IOP Publishing, 667, 012011,DOI:10.1088/1742-6596/667/1/012011.

Laegreid, N., Wehner, G. K., 1961, Sputtering Yields of Metalsfor Ar+ and Ne+ Ions with Energies from 50 to 600 ev,Journal of Applied Physics, 32, 365, DOI:http://dx.doi.org/10.1063/1.1736012.

LAMMPS Molecular Dynamics Simulator, available online at:http://lammps.sandia.gov., accessed: 23.11.2017.

Li, M. Y. H., Li, L. M., Meng, F. L., Zheng, W. T., Zhao, J.,Wang, Y. M., 2006, Effect of substrate temperature onthe surface and interface oxidation of NiTi thin films, J.Elect. Spect. Rel. Phenom., 151, 144-148.

Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazumata,Y., Miyagawa, S., Morita, K., Shimizu, R., Tawara, H.,1984, Energy dependence of the ion-induced sputteringyields of monatomic solids, Atomic Data and NuclearData Tables, 31, 1-80.

McDaniel, E. W., 1964, Collision phenomena in ionized gases,Wiley Seriesin Plasma Physics, Wiley, New York.Priyadarshini, B. G., Gupta, M. K., Ghosh, S., Chakraborty, M.,Aich, S., 2013, Role of substrate bias during depositionof magnetron sputtered Ni, Ti and Ni-Ti thin films, Surf.Eng., 29, 689, DOI: 10.1179/1743294413Y.0000000182.

Sambandama, S. N., Bhansalia, S., Bhethanabotlab, V. R., Sood,D. K. , 2006, Studies on sputtering process of multicomponentZr-Ti-Cu-Ni-Be alloy thin films, Vacuum, 80,406-414.

Sanjabi, S., Barber, Z. H., 2010, The effect of film compositionon the structure and mechanical properties of NiTi shapememory thin films, Surface and Coatings Technology,204, 1299-1304.

Sanjabi, S., Cao, Y. Z., Sadrnezhaad, S. K., Barber, Z. H., 2005,Binary and ternary NiTi-based shape memory films depositedby simultaneous sputter deposition from elementaltargets, J. Vac. Sci. Technol. A, 23, 1425-1429.

Savi, M. A., Paiva, A., Baeta-Neves, A. P., Pacheco, P. M. C.L.,2002, Phenomenological modeling and numerical simulationof shape memory alloys: a thermo-plastic-phasetransformation coupled model, Journal of IntelligentMaterial Systems and Structures, 13(220), 261-273.

Senthilnathan, S., Mohan Rao G., Mohan, S., 1998, Fluid simusimulationof a pulsed-power inductively coupled argonplasma, J. Vac. Sci. Technol. A, 84, 564-571.

Simulation of Metal Transport, available online at:http://www.draft.ugent.be/, accessed: 23.11.2017.

SRIM, Stopping and range of ions in materials can be downloadedfrom, available online at: www.srim.org, accessed:23.11.2017.

Thompson, M. W., 2002, Atomic collision cascades in solids,Vacuum, 66, 99-114.

Van Aeken, K., Mahieu, S., 2008, The metal flux from arotating cylindrical magnetron: a Monte Carlosimulation, Journal of Physics D: Applied Physics, 41,205307, DOI: 10.1088/0022-3727/41/20/205307.

Wagner, C. D., Davis, L. E., Riggs, W. M., 1980, The energydependence of the electron mean free path, Surf.Interface Anal., 2, 53-55.

Zhang, Z. L., Zhang, L., 2004, Anisotropic angular distributionof sputtered atoms, Plasma Sci. Plasma Technol., 159,301, DOI: 10.1080/10420150410001724495.