Sea ice mechanics

Sea ice mechanics

F. Paul1, C. Schwarz2, R. R. Audh3, J. Bluhm2, S. Johnson4, K. MacHutchon5, T. Mielke1, Amit Mishra6, T. Rampai4, T. Ricken7, A. Schwarz2, S. Skatulla5, A. Thom7, R. Verrinder6, J. Schröder2, M. Vichi3, D.C. Lupascu1

1Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Germany.

2Institute of Mechanics, University of Duisburg-Essen, Germany.

3Department of Oceanography and Marine and Antarctic Research Centre for Innovation and Sustainability (MARiS), University of Cape Town, South Africa.

4Department of Chemical Engineering and Marine and Antarctic Research Centre for Innovation and Sustaina-bility (MARiS), University of Cape Town, South Africa.

5Department of Civil Engineering, University of Cape Town, South Africa.

6Department of Electrical Engineering and Marine and Antarctic Research Centre for Innovation and Sustaina-bility (MARiS), University of Cape Town, South Africa.

7Institute of Mechanics, Structural Analysis and Dynamics of Aerospace Structures, University of Stuttgart, Ger-many.



Earth System Models (ESM), simulating sea ice and its interaction with the atmosphere and open ocean, require reliable physical, chemical, and biological input from measurements. There is limited data available from the Marginal Ice Zone of the Antarctic, where sea ice growth mech-anisms differ from the Arctic. The main objective of this study is to review existing work related to Antarctic sea ice and highlight gaps in the available literature. The mechanical properties of sea ice and the numerical modeling of sea ice across all scales are covered. We summarize the genesis, physical mechanics, static and dynamic properties, strength, toughness, and transport of young sea ice as well as medium to large scale observation. On the computational mechanics side large- and small-scale modeling, ocean-sea ice and atmosphere-sea ice models, as well as sea ice rheology models, sea ice fracture mechanics, and bio-geo-chemical interaction processes are captured. The synergy between the physical and computational mechanics brings to light missing information from both fields.

Plain language summary (PLS)

Sea Ice determines the interaction of the ocean with the atmosphere in both the southern and northern hemispheres. Its formation and annual development is subject to mechanical interaction with ocean currents and winds. This review covers the mechanics of sea ice in the Antarctic and its relation to the Arctic covering experiment and modelling. Impact on the climate is discussed.

Cite as:

Paul, F., Schwarz, C., Audh, R., Bluhm, J., Johnson, S., MacHutchon, K., Mielke, T., Mishra, A., Rampai, T., Ricken, T., Schwarz, A., Skatulla, S., Thom, A., Verrinder, R., Schröder, J., Vichi, M., Lupascu, D. (2023). Sea ice mechanics. Computer Methods in Materials Science, 23(3), 5-54 .

Article (PDF):


Sea ice mechanics, Polar regions, Review, Antarctic MIZ


Adamson, R.M., Dempsey, J.P., DeFranco, S.J., & Xie, Y. (1995). Largescale in-situ ice fracture experiments: Part I – Experimentalaspects. In J.P. Dempsey, Y. Rajapakse (Eds.), Ice Mechanics, 1995, presented at the 1995 Joint ASME AppliedMechanics and Materials Summer Meeting, Los Angeles, California, June 28–30, 1995 (pp. 107–128). American Societyof Mechanical Engineers.

Alberello, A., Nelli, F., Dolatshah, A., Bennetts, L.G., Onorato, M., & Toffoli, A. (2019a). An experimental model of waveattenuation in pancake ice. In The 29th International Ocean and Polar Engineering Conference. International Society ofOffshore and Polar Engineers.

Alberello, A., Onorato, M., Bennetts, L., Vichi, M., Eayrs, C., MacHutchon, K., & Toffoli, A. (2019b). Brief communication:Pancake ice floe size distribution during the winter expansion of the antarctic marginal ice zone. Cryosphere, 13(1),41–48.

Alberello, A., Bennetts, L., Heil, P., Eayrs, C., Vichi, M., MacHutchon, K., Onorato, M., & Toffoli, A. (2020). Drift of pancakeice floes in the winter Antarctic marginal ice zone during Polar cyclones. Journal of Geophysical Research: Oceans,125(3), e2019JC015418.

Alberello, A., Bennetts, L.G., Onorato, M., Vichi, M., MacHutchon, K., Eayrs, C., Ntamba, B.N., Benetazzo, A., Bergamasco,F., Nelli, F., Pattani, R., Clarke, H., Tersigni, I., & Toffoli, A. (2022). Three-dimensional imaging of waves and floesin the marginal ice zone during a cyclone. Nature Communications, 13(1), 4590.

Aly, M., Taylor, R., Bailey Dudley, E., & Turnbull, I. (2019). Scale effect in ice flexural strength. Journal of Offshore Mechanicsand Arctic Engineering, 141(5), 051501.

Ambati, M., Gerasimov, T., & De Lorenzis, L. (2014). A review on phasefield models of brittle fracture and a new fast hybridformulation. Computational Mechanics, 55(2), 383–405.

Andreas, E., Paulson, C., William, R., Lindsay, R., & Businger, J. (1979). The turbulent heat flux from Arctic leads. Boundary-Layer Meteorology, 17(1), 57–91.

Andreas, E., Claffy, K., & Makshtas, A. (2000). Low-level atmospheric jets and inversions over the western Weddell Sea.Boundary-Layer Meteorology, 97(3), 459–486.

Ardhuin, F., Otero, M., Merrifield, S., Grouazel, A., & Terrill, E. (2020). Ice breakup controls dissipation of wind waves acrossSouthern Ocean sea ice. Geophysical Research Letters, 47(13), e2020GL087699.

Armero, F., & Linder, C. (2009). Numerical simulation of dynamic fracture using finite elements with embedded discontinuities.International Journal of Fracture, 160(2), 119–141.

Azizi, F. (1989). Primary creep of polycrystalline ice under constant stress. Cold Regions Science and Technology, 16(2),159–165.

Bailey, E. (2011). The Consolidation and Strength of Rafted Sea Ice [PhD thesis], University College London.Bargel, H.-J., Schulze, G. (Hrsg.), Hilbrans, H., Hübner, K.-H., & Krüger, O. (2008). Werkstoffkunde (10, bearbeitete Auflage).Springer Berlin.

Bateman, S.P., Orzech, M.D., & Calantoni, J. (2019). Simulating the mechanics of sea ice using the discrete element method.Mechanics Research Communications, 99, 73–78.

Bear, J. (2004). Mathematical models of flow and contaminant transport in saturated porous media. In J. Kubik, M. Kaczmarek,& J. Murdoch (Eds.), Modelling Coupled Phenomena in Saturated Porous Materials. Advanced course, Bydgoszcz, June2–6, 2003 (pp. 89–178). Centre of Excellence for Advanced Materials and Structures, Institute of Fundamental TechnologicalResearch.

Bear, J., & Bachmat, Y. (1990). Introduction to Modeling of Transport Phenomena in Porous Media. Springer Dordrecht.Becker, E. (1976). The finite element method in AIDJEX. AIDJEX Bulletin, 33, 144–157.

Belosi, F., Santachiara, G., & Prodi, F. (2014). Ice-forming nuclei in Antarctica: New and past measurements. AtmosphericResearch, 145–146, 105–111.

Belytschko, T., Chen, H., Xu, J., & Zi, G. (2003). Dynamic crack propagation based on loss of hyperbolicity and a new discontinuousenrichment. International Journal for Numerical Methods in Engineering, 58(12), 1873–1905.

Bennetts, L.G., & Squire, V.A. (2012). On the calculation of an attenuation coefficient for transects of ice-covered ocean. Proceedingsof the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2137), 136–162.

Bennetts, L., O’Farrell, S., & Uotila, P. (2017). Brief communication: Impacts of ocean-wave-induced breakup of Antarctic seaice via thermodynamics in a stand-alone version of the CICE sea-ice model. The Cryosphere, 11(3), 1035–1040.

Berti, A., Bochicchio, I., & Fabrizio, M. (2016). Transition and separation process in brine channels formation. Journal ofMathematical Physics, 57(2), 023513Berti, V., Fabrizio, M., & Grandi, D. (2013). A phase field model for brine channels in sea ice. Physica B: Condensed Matter,425, 100–104.

Biot, M. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.

Bitz, C.M., & Lipscomb, W.H. (1999). An engery-conserving thermodynamic model of sea ice. Journal of Geophysical Research,104(C7), 15699–15677.

Bitz, C., Holland, M., Weaver, A., & Eby, M. (2001). Simulating the icethickness distribution in a coupled climate model.Journal of Geophysical Research: Oceans, 106(C2), 2441–2463.

Blackford, J.R. (2007). Sintering and microstructure of ice: a review. Journal of Physics D: Applied Physics, 40(21), R355–R385.

Bluhm, J., Ricken, T., & Bloßfeld, M. (2009). Dynamic Phase Transition Border under Freezing-Thawing Load – A MultiphaseDescription. Technical Report 47. J. Schröder (Ed.). Institute of Mechanics, University Duisburg-Essen.

Bluhm, J., Ricken, T., & Bloßfeld, M. (2011). Ice formation in porous media. In B. Markert (Ed.), Advances in Extended andMultifield Theories for Continua (pp. 153–174). Springer Berlin, Heidelberg.

Bluhm, J., Bloßfeld, W.M., & Ricken, T. (2014). Energetic effects during phase transition under freezing-thawing load in porousmedia – a continuums multiphase description and FE-simulation. Journal of Applied Mathematics and Mechanics,94(7–8), 586–608.

Bonath, V., Edeskär, T., Lintzén, N., Fransson, L., & Cwirzen, A. (2019). Properties of ice from first-year ridges in the BarentsSea and Fram Strait. Cold Regions Science and Technology, 168, 102890.

Budyko, M. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5), 611–619.

Butkovich, T.R. (1956). Strength Studies of Sea Ice. Technical report.Butkovich, T.R. (1959). Some Physical Properties of Ice from the TUTO Tunnel and Ramp, Thule, Greenland. U.S. Army Snow,Ice, and Permafrost Research Establishment.

Camacho, G., & Ortiz, M. (1996). Computational modelling of impact damage in brittle materials. International Journal ofSolids and Structures, 33(20–22), 2899–2938.

Cavalieri, D., Cowan, A., Gloersen, P., Grenfell, T., Josberger, E., Knight, R., Martin, S., Muench, R., Overland, J., Pease, C.,Powell, J., Reynolds, R., Schumacher, J., Squire, V., Wadhams, P., & Wilheit, T. (1983). MIZEX West: Bering Sea marginalice zone experiment. Eos, Transactions American Geophysical Union, 64(40), 578–579.

Chalmers, B. (1964). Principles of Solidification. Wiley.Champollion, N., Picard, G., Arnaud, L., Lefebvre, E., & Fily, M. (2013). Hoar crystal development and disappearance atDome C, Antarctica: observation by near-infrared photography and passive microwave satellite. The Cryosphere, 7(4),1247–1262.

Chen, X., & Ji, S. (2019). Experimental study on the tensile strength of granular sea ice based on Brazilian tests. In Proceedingsof the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2019, Delft, TheNetherlands. Port and Ocean Engineering under Arctic Conditions (POAC).Colbeck, S.C. (1982). An overview of seasonal snow metamorphism. Reviews of Geophysics, 20(1), 45–61.

Cole, D.M., Gould, L.D., & Burch, W.B. (1985). A system for mounting end caps on ice specimens. Journal of Glaciology,31(109), 362–365.

Coussy, O. (2004). Poromechanics. Wiley.Coussy, O. (2005). Poromechanics of freezing materials. Journal of the Mechanics and Physics of Solids, 53(8), 1689–1718.

Cox, G.F.N. (1983). Thermal expansion of saline ice. Journal of Glaciology, 29(103), 425–432.

Cox, G.F.N., & Richter-Menge, J.A. (1984). Mechanical Properties of Multi-year Sea Ice Triaxial Tests Status Report. Technicalreport. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover.

Cox, G.F.N., & Richter-Menge, J.A. (1985). Tensile strength of multi-year pressure ridge sea ice samples. Journal of EnergyResources Technology, 107(3), 375–380.

Cox, G.F.N., & Weeks, W.F. (1983). Equations for determining the gas and brine volumes in sea ice samples. Journal of Glaciology,29(102), 306–316.

Cox, G.F.N., & Weeks, W.F. (1986). Changes in the salinity and porosity of sea-ice samples during shipping and storage. Journalof Glaciology, 32(112), 371–375.

Cox, G.F.N., & Weeks, W.F. (1988). Numerical simulations of the profile properties of undeformed first-year sea ice during thegrowth season. Journal of Geophysical Research, 93(C10), 12449–12460.

Crabeck, O., Galley, R., Delille, B., Else, B., Geilfus, N.X., Lemes, M., Roches, M.D., Francus, P., Tison, J.L., & Rysgaard, S.(2016). Imaging air volume fraction in sea ice using non-destructive X-ray tomography. The Cryosphere, 10(3), 1125–1145.

Cuffey, K.M., & Paterson, W.S.B. (2010). The Physics of Glaciers (Fourth ed.). Butterworth-Heinemann/Elsevier.Damsgaard, A., Adcroft, A., & Sergienko, O. (2018). Application of discrete element methods to approximate sea ice dynamics.Journal of Advances in Modeling Earth Systems, 10(9), 2228–2244.

Damsgaard, A., Sergienko, O., & Adcroft, A. (2021). The effects of ice floe-floe interactions on pressure ridging in sea ice.Journal of Advances in Modeling Earth Systems, 13(7), e2020MS002336.

Danilov, S., Kivman, G., & Schröter, J. (2004). A finite-element ocean model: principles and evaluation. Ocean Modelling,6(2), 125–150.

Danilov, S., Wang, Q., Timmermann, R., Iakovlev, M., Sidorenko, D., Kimmritz, M., & Jung, T. (2015). Finite-element sea icemodel (FESIM), version 2. Geoscientific Model Development, 8(6), 1747–1761.

Danilov, S., Sidorenko, D., Wang, Q., & Jung, T. (2017). The finite-volume sea ice–ocean model (FESOM2). GeoscientificModel Development, 10(2), 765–789.

DeConto, R.M., & Pollard, D. (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature,421, 245–249.

DeFranco, S.J., & Dempsey, J.P. (1994). Crack propagation and fracture resistance in saline ice. Journal of Glaciology, 40(136),451–462.

DeFranco, S.J., Wei, Y., & Dempsey, J.P.D. (1991). Notch-acuity effects on the fracture toughness of saline ice. Annals ofGlaciology, 15, 230–235.

Dempsey, J.P. (1991). The fracture toughness of ice. In S. Jones, J. Tillotson, R.F. McKenna, I.J. Jordaan (Eds.), Ice-StructureInteraction. IUTAM/IAHR Symposium St. John’s, Newfoundland Canada 1989 (pp. 109–145). Springer Berlin, Heidelberg.

Dempsey, J.P., Bentley, D.L., & Sodhi, D.S. (1986). Fracture toughness of model ice. In 8th International Symposium on Ice,Iowa City, August 18–22, 1986 (Vol. 1, pp. 365–376).Dempsey, J.P., Adamson, R.M., & Mulmule, S.V. (1999). Scale effects on the in-situ tensile strength and fracture of ice. Part II:First-year sea ice at Resolute, N.W.T. International Journal of Fracture, 95, 347–366.

Doble, M.J., Wilkinson, J.P., Valcic, L., Robst, J., Tait, A., Preston, M., Bidlot, J.-R., Hwang, B., Maksym, T., & Wadhams, P.(2017). Robust wavebuoys for the marginal ice zone: Experiences from a large persistent array in the Beaufort sea. Elementa:Science of the Anthropocene, 5, 47.

Dolatshah, A., Nelli, F., Bennetts, L., Alberello, A., Meylan, M., Monty, J., & Toffoli, A. (2018). Letter: Hydroelastic interactionsbetween water waves and floating freshwater ice. Physics of Fluids, 30(9), 091702.

Domone, P., & Illston, J. (Eds.) (2010). Construction Materials: Their Nature and Behavior. Spon Press.Dong, X-l., Xing, H., Weng, K.-r., & Zhao, H.-l. (2017). Current development in quantitative phase-field modeling of solidification.Journal of Iron and Steel Research International, 24(9), 865–878.

Dukowicz, J. (1997). Comments on “Stability of the Viscous–Plastic Sea Ice Rheology”. Journal of Physical Oceanography,27(3), 480–481.

Duval, P., Ashby, M.F., & Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. The Journal ofPhysical Chemistry, 87(21), 4066–4074.

Dykins, J. (1967). Tensile properties of sea ice grown in a confined system. In Physics of Snow and Ice. International Conferenceon Low Temperature Science. 1. Conference on Physics of Snow and Ice Aug., 14–19, 1966, Sapporo (pp. 523–537).Institute of Low Temperature Science.

Dykins, J.E. (1971). Ice Engineering – Material Properties of Saline Ice for a Limited Range of Conditions. Technical report.Naval Civil Engineering Lab Port Hueneme Calif.

Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., & Li, X. (2019). Understanding the seasonal cycle of Antarctic seaice extent in the context of longer-term variability. Reviews of Geophysics, 57(3), 1037–1064.

Eicken, H. (1992). Salinity profiles of Antarctic sea ice: Field data and model results. Journal of Geophysical Research: Ocean,97(C10), 15545–15557.

Eicken, H. (2003). From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties ofsea ice. In D.N. Thomas, G. Dieckmann (Eds.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology(pp. 22–81). Blackwell Science.

Eicken, H., & Lange, M.A. (1989). Development and properties of sea ice in the coastal regime of the southeastern WeddellSea. Journal of Geophysical Research, 94(C6), 8193–8206.

Eicken, H., Kolatschek, J., Freitag, J., Lindemann, F., Kassens, H., & Dmitrenko, I. (2000). A key source area and constraintson entrainment for basin-scale sediment transport by Arctic sea ice. Geophysical Research Letters, 27(13), 1919–1922.

Eicken, H., Gradinger, R., Gaylord, A., Mahoney, A., Rigor, I., & Melling, H. (2005). Sediment transport by sea ice in theChukchi and Beaufort Seas: Increasing importance due to changing ice conditions?. Deep Sea Research Part II: TopicalStudies in Oceanography, 52(24–26), 3281–3302.

Elwell, L., & Pointon, A.J. (1972). Classical Thermodynamics. Penguin.

Emery, W.J., Fowler, C.W., & Maslanik, J.A. (1997). Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to1994. Geophysical Research Letters, 24(8), 897–900.

Eriksen, C., Osse, T., Light, R., Wen, T., Lehman, T., Sabin, P., Ballard, J., & Chiodi, A. (2001). Seaglider: a long-range autonomousunderwater vehicle for oceanographic research. IEEE Journal of Oceanic Engineering, 26(4), 424–436.

Fabrizio, M., Giorgi, C., & Morro, A. (2016). Solidification and separation in saline water. Discrete & Continuous DynamicalSystems – Series S, 9(1), 139–155.

Fagerström, M., & Larsson, R. (2006). Theory and numerics for finite deformation fracture modelling using strong discontinuities.International Journal for Numerical Methods in Engineering, 66(6), 911–948.

Feltham, D.L. (2005). Granular flow in the marginal ice zone. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences, 363(1832), 1677–1700.

Feltham, D.L. (2008). Sea ice rheology. Annual Review of Fluid Mechanics, 40, 91–112.

Feltham, D.L., Untersteiner, N., Wettlaufer, J.S., & Worster, M.G. (2006). Sea ice is a mushy layer. Geophysical ResearchLetters, 33(14), 1–4.Fox-Kemper, B., Adcroft, A., Böning, C., et al. (2019). Challenges and prospects in ocean circulation models. Frontiers inMarine Science, 6, 65.

Frantz, C.M., Light, B., Farley, S.M., Carpenter, S., Lieblappen, R., Courville, Z., Orellana, M.V., & Junge, K. (2019). Physicaland optical characteristics of heavily melted “rotten” Arctic sea ice. The Cryosphere, 13(3), 775–793.

Frederking, R., & Sudom, D. (2013). Review of flexural strength of multi-year ice. In ISOPE-2013 Anchorage conferenceproceedings. The proceedings of the Twenty-Third (2013) International Offshore and Polar Engineering Conference.Anchorage, Alaska, USA, June 30 – July 5, 2013 (pp. 1087–1093). ISOPE.

Frederking, R., & Timco, G. (1983). Uniaxial compressive strength and deformation of Beaufort sea ice. In POAC 83. Theseventh international conference on port and ocean engineering under arctic conditions (Vol. 1: Sea ice properties andconditions in cold regions, pp. 89–98). Technical Research Centre of Finland.Frederking, R., & Timco, G.W. (1984). Measurement of shear strength of granular/discontinuous-columnar sea ice. Cold RegionsScience and Technology, 9(3), 215–220.

Frederking, R., & Timco, G.W. (1986). Field measurements of the shear strength of columnar-grained sea ice. In ProceedingsIAHR Symposium on Ice 1986. Iowa City, August 18–22, 1986 (Vol. 1, pp. 279–292). Inst. of Hydraulic Research.

Freitag, J., & Eicken, H. (2003). Meltwater circulation and permeability of Arctic summer sea ice derived from hydrologicalfield experiments. Journal of Glaciology, 49(166), 349–358.

Gao, G., Chen, C., Qi, J., & Beardsley, R.C. (2011). An unstructured-grid, finite-volume sea ice model: Development, validation,and application. Journal of Geophysical Research: Oceans, 116(C8).

Girard, L., Weiss, J., Molines, J.M., Barnier, B., & Bouillon, S. (2009). Evaluation of high-resolution sea ice models on the basisof statistical and scaling properties of Arctic sea ice drift and deformation. Journal of Geophysical Research: Oceans,114(C8).

Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., & Legat, V. (2011). A new modeling framework for sea-ice mechanicsbased on elasto-brittle rheology. Annals of Glaciology, 52(57), 123–132.

Glen, J.W., & Perutz, M.F. (1954). The growth and deformation of ice crystals. Journal of Glaciology, 2(16), 397–403.

Gold, L.W. (1958). Some observations on the dependence of strain on stress for ice. Canadian Journal of Physics, 36(10),1265–1275.

Golden, K.M., Ackley, S.F., & Lytle, V.I. (1998). The percolation phase transition in sea ice. Science, 282(5397), 2238–2241.

Golden, K.M., Heaton, A.L., Eicken, H., & Lytle, V.I. (2006). Void bounds for fluid transport in sea ice. Mechanics of Materials,38(8–10), 801–817.

Golden, K.M., Bennetts, L.G., Cherkaev, E., Eisenman, I., Feltham, D., Horvat, C., Hunke, E., Jones, C., Perovich, D.K., Ponte–Castañeda, P., Strong, C., Sulsky, D., & Wells, A.J. (2020). Modeling sea ice. Notices of the American MathematicalSociety, 67(10), 1535–1555.

Goodman, D.J., & Tabor, D. (1978). Fracture toughness of ice: a preliminary account of some new experiments. Journal ofGlaciology, 21(85), 651–660.

Grachev, A.A., Fairall, Ch.W., Persson, P.O.G., Andreas, E.L., & Guest, P.S. (2005). Stable boundary-layer scaling regimes:The Sheba data. Boundary-Layer Meteorology, 116(2), 201–235.

Grae Worster, M.G., & Rees Jones, D.W. (2015). Sea-ice thermodynamics and brine drainage. Philosophical Transactions ofthe Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045), 20140166.

Grandi, D. (2013). A phase field approach to solidification and solute separation in water solutions. Zeitschrift für AngewandteMathematik und Physik, 64(6), 1611–1624.

Gray, J. (1999). Loss of hyperbolicity and Ill-posedness of the viscous-plastic sea ice rheology in uniaxial divergent flow. Journalof Physical Oceanography, 29(11), 2920–2929.

Gray, J., & Killworth, P. (1995). Stability of the viscous-plastic sea ice rheology. Journal of Physical Oceanography, 25(5), 971–978.

Gray, J., & Killworth, P. (1997). Reply to J. Dukowicz: Comments on stability of the viscous-plastic sea ice rheology. Journalof Physical Oceanography, 27(3), 482–483.

Griewank, P.J., & Notz, D. (2013). Insights into brine dynamics and sea ice desalination from a 1-D model study of gravitydrainage. Journal of Geophysical Research: Oceans, 118(7), 3370–3386.

Gross, D., & Seelig, T. (2011). Micromechanics and homogenization. In D. Gross, & T. Seelig (Eds.), Fracture Mechanics.With an Introduction to Micromechanics (Second ed., pp. 229–299). Springer Berlin, Heidelberg.

Group, M. (1986). MIZEX East 83/84: The summer marginal ice zone program in the Fram Strait/Greenland Sea. Eos, TransactionsAmerican Geophysical Union, 67(23), 513–517.

Gürses, E., & Miehe, C. (2009). A computational framework of threedimensional configurational-force-driven brittle crackpropagation. Computer Methods in Applied Mechanics and Engineering, 198(15–16), 1413–1428.

Hall, D.K., Chang, A.T.C., & Foster, J.L. (1986). Detection of the depth-hoar layer in the snow-pack of the Arctic coastal plainof Alaska, U.S.A., using satellite data. Journal of Glaciology, 32(110), 87–94.

Han, H., Li, Z., Huang, W., Lu, P., & Lei, R. (2015). The uniaxial compressive strength of the Arctic summer sea ice. ActaOceanologica Sinica, 34(1), 129–136.

Hawkes, I., & Mellor, M. (1972). Deformation and fracture of ice under uniaxial stress. Journal of Glaciology, 11(61), 103–131.

Helmig, R. (1997). Multiphase Flow and Transport Processes in the Subsurface. A Contribution to the Modeling of Hydrosystems.Springer Berlin, Heidelberg.

Heorton, H., Feltham, D.L., & Tsamados, M. (2018). Stress and deformation characteristics of sea ice in a high-resolution,anisotropic sea ice model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and EngineeringSciences, 376(2129), 20170349.

Herman, A. (2016). Discrete-element bonded-particle sea ice model DESIgn, version 1.3 a – model description and implementation.Geoscientific Model Development, 9(3), 1219–1241.

Herman, A., Evers, K.-U., & Reimer, N. (2018). Floe-size distributions in laboratory ice broken by waves. The Cryosphere,12(2), 685–699.

Herman, A., Cheng, S., & Shen, H.H. (2019). Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory casestudy. The Cryosphere, 13(11), 2901–2914.

Hibler III, W.D. (1979). A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4), 815–846.

Hicks, F. (2009). An overview of river ice problems: CRIPE07 guest editorial. Cold Regions Science and Technology, 55(2),175–185.

Holland, P., & Kwok, R. (2012). Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5(12), 872–875.

Hoppmann, M., Richter, M.E., Smith, I.J., Jendersie, S., Langhorne, P.J., Thomas, D.N., & Dieckmann, G.S. (2020). Plateletice, the Southern Ocean’s hidden ice: A review. Annals of Glaciology, 61(83), 341–368.

Horvat, C.H., & Tziperman, E. (2015). A prognostic model of the sea-ice floe size and thickness distribution. The Cryosphere,9(6), 2119–2134.

Hosford, W.F. (2006). Sintering. In W.F. Hosford, Materials Science. An Intermediate Text (pp. 144–152). Cambridge UniversityPress.

Hunke, E.C. (2001). Viscous–plastic sea ice dynamics with the EVP model: linearization issues. Journal of Computational Physics, 170(1), 18–38.

Hunke, E.C., & Dukowicz, J.K. (1997). An elastic–viscous–plastic model for sea ice dynamics. Journal of Physical Oceanography, 27(9), 1849–1867.

Hunke, E.C., & Dukowicz, J.K. (2002). The elastic–viscous–plastic sea ice dynamics model in general orthogonal curvilinearcoordinates on a sphere–incorporation of metric terms. Monthly Weather Review, 130(7), 1848–1865.

Hunke, E.C., & Lipscomb, W.H. (2010). CICE: the Los Alamos Sea Ice Model, Documentation and Software User’s Manual,Version 4.1.

Hunke, E.C., Lipscomb, W.H., & Turner, A.K. (2010). Sea-ice models for climate study: retrospective and new directions.Journal of Glaciology, 56(200), 1162–1172.

Hutchings, J.K., Heil, P., Steer, A., & Hibler III, W.D. (2012). Subsynoptic scale spatial variability of sea ice deformation in thewestern Weddell Sea during early summer. Journal of Geophysical Research: Oceans, 117(C1).

Ip, Ch.F., Hibler III, W.D., & Flato, G.M. (1991). On the effect of rheology on seasonal sea-ice simulations. Annals of Glaciology,15, 17–25.

Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C., & Mackenzie, D. (2013). A novel and low-cost seaice mass balance buoy. Journal of Atmospheric and Oceanic Technology, 30(11), 2676–2688.

Jeffrey, N., & Hunke, E.C. (2014). Modeling the winter-spring transition of first-year ice in the western Weddell Sea. Journalof Geophysical Research: Oceans, 119(9), 5891–5920.

Jeffrey, N., Hunke, E.C., & Elliott, S.M. (2011). Modeling the transport of passive tracers in sea ice. Journal of GeophysicalResearch: Oceans, 116(C7).Ji, S.-y., Liu, H.-l., Li, P.-f., & Su, J. (2013). Experimental studies on the Bohai Sea ice shear strength. Journal of Cold RegionsEngineering, 27(4), 244–254.

Johnson, S., Khoboko, T., Matlakala, B., Vichi, M., & Rampai, T. (2022). Crystal size and texture data of sea ice from the AntarcticMarginal Ice Zone collected in Spring 2019. Zenodo.

Jungclaus, J.H., Lorenz, S.J., Schmidt, H. et al. (2022). The icon earth system model version 1.0. Journal of Advances in ModelingEarth Systems, 14(4), e2021MS002813.

Karulina, M., Marchenko, A., Karulin, E., Sodhi, D., Sakharov, A., & Chistyakov, P. (2019). Full-scale flexural strength of seaice and freshwater ice in Spitsbergen Fjords and North-West Barents Sea. Applied Ocean Research, 90, 101853.

Kawamura, T., Shirasawa, K., & Kobinata, K. (2001). Physical properties and isotopic characteristics of landfast sea ice aroundthe North Water (NOW) Polynya region. Atmosphere-Ocean, 39(3), 173–182.

Keller, J.B. (1998). Gravity waves on ice-covered water. Journal of Geophysical Research: Oceans, 103(C4), 7663–7669.

Kennedy, J.H., Pettit, E.C., & Di Prinzio, C.L. (2013). The evolution of crystal fabric in ice sheets and its link to climate history.Journal of Glaciology, 59(214), 357–373.

Kennicutt II, M.C., Chown, S.L., Cassano, J.J., Liggett, D., Massom, R., Peck, L.S., Rintoul, S.R., Storey, J.W., Vaughan, D.G.,Wilson, T.J., & Sutherland, W.J. (2014). Polar research: Six priorities for Antarctic science. Nature, 512(7512), 23–25.

Kennicutt II, M.C., Kim, Y., Rogan-Finnemore, M. et al. (2016). Delivering 21st century Antarctic and Southern Ocean science.Antarctic Science, 28(6), 407–423.

Kennicutt II, M.C., Bromwich, D., Liggett, D. et al. (2019). Sustained Antarctic research: A 21st century imperative. One Earth,1(1), 95–113.

Kimmritz, M., Danilov, S., & Losch, M. (2015). On the convergence of the modified elastic–viscous–plastic method for solvingthe sea ice momentum equation. Journal of Computational Physics, 296, 90–100.

Kohout, A.L., Williams, M.J.M., Dean, S.M., & Meylan, M.H. (2014). Storminduced sea-ice breakup and the implications forice extent. Nature, 509(7502), 604–607.

Kohout, A.L., Penrose, B., Penrose, S., & Williams, M.J.M. (2015). A device for measuring wave-induced motion of ice floesin the Antarctic marginal ice zone. Annals of Glaciology, 56(69), 415–424.

Kohout, A.L., Smith, M., Roach, L.A., Williams, G., Montiel, F., & Williams, M.J.M. (2020). Observations of exponentialwave attenuation in Antarctic sea ice during the PIPERS campaign. Annals of Glaciology, 61(82), 196–209.

Krishfield, R., Toole, J., Proshutinsky, A., & Timmermans, M.-L. (2008). Automated ice-tethered profilers for seawater observationsunder pack ice in all seasons. Journal of Atmospheric and Oceanic Technology, 25(11), 2091–2105.

Kuehn, G.A., Lee, R.W., Nixon, W.A., & Schulson, E.M. (1990). The structure and tensile behavior of first-year sea ice andlaboratory grown saline ice. Journal of Offshore Mechanics and Arctic Engineering, 112(4), 357–363.

Kulyakhtin, A., & Tsarau, A. (2014). A time-dependent model of marine icing with application of computational fluid dynamics.Cold Regions Science and Technology, 104–105, 33–44.

Kulyakhtin, A., Kulyakhtin, S., & Løset, S. (2016). The role of the ice heat conduction in the ice growth caused by periodic seaspray. Cold Regions Science and Technology, 127, 93–108.

Kurylyk, B.L., & Watanabe, K. (2013). The mathematical representation of freezing and thawing processes in variably-saturated,non-deformable soils. Advances in Water Resources, 60, 160–177.

Kutschan, B., Morawetz, K., & Gemming, S. (2010). Modeling the morphogenesis of brine channels in sea ice. Physical ReviewE: Statistical, Nonlinear, and Soft Matter Physics, 81(3), 036106.

Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018).Environmental Research Letters, 13(10), 105005.

Lang, R., Leo, B., & Brown, R. (1984). Observations on the growth process and strength characteristics of surface hoar.In International snow science workshop (a merging of theory and practice). Proceedings. October 24–27, 1984, Aspen,Colorado USA (pp. 188–195). ISSW Workshop Committee.

Lange, M.A., & Eicken, H. (1991). Textural characteristics of sea ice and the major mechanisms of ice growth in the WeddellSea. Annals of Glaciology, 15, 210–215.

Lange, M.A., Ackley, S., Wadhams, P., Dieckmann, G., & Eicken, H. (1989). Development of sea ice in the Weddell Sea. Annalsof Glaciology, 12, 92–96.

Lee, C.M., Cole, S., Doble, M., Freitag, L., Hwang, P., Jayne, S., Jeffries, M., Krishfield, R., Maksym, T., Maslowski, W., Owens,B., Posey, P., Rainville, L., Roberts, A., Shaw, B., Stanton, T., Thomson, J., Timmermans, M.-L., Toole, J., Wadhams, P.,Wilkinson, J., & Zhang, Z. (2012). Marginal Ice Zone (MIZ) Program: Science and Experiment Plan. Technical ReportAPL-UW 1201. Applied Physics Laboratory, University of Washington, Seattle.

Lee, C.M., Thomson, J., The Marginal Ice Zone Team, & The Arctic Sea State Team (2017). An autonomous approach to observingthe seasonal ice zone in the Western Arctic. Oceanography, 30(2), 56–68.

Lemieux, J.-F., & Tremblay, B. (2009). Numerical convergence of viscousplastic sea ice models. Journal of Geophysical Research:Oceans, 114(C5).

Lemieux, J.-F., Tremblay, B., Sedláček, J., Tupper, P., Thomas, S., Huard, D., & Auclair, J.-P. (2010). Improving the numericalconvergence of viscous-plastic sea ice models with the Jacobian-free Newton–Krylov method. Journal of ComputationalPhysics, 229(8), 2840–2852.

Lemieux, J.-F., Knoll, D.A., Tremblay, B., Holland, D.M., & Losch, M. (2012). A comparison of the Jacobian-free Newton–Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: a serialalgorithm study. Journal of Computational Physics, 231(17), 5926–5944.

Lemieux, J.-F., Knoll, D.A., Losch, M., & Girard, C. (2014). A secondorder accurate in time IMplicit–EXplicit (IMEX) integrationscheme for sea ice dynamics. Journal of Computational Physics, 263, 375–392.

Leppäranta, M. (2011). The drift of sea ice. Springer Berlin, Heidelberg.Leppäranta, M., & Hibler III, W.D. (1985). The role of plastic ice interaction in marginal ice zone dynamics. Journal of GeophysicalResearch: Oceans, 90(C6), 11899–11909.

Li, Z., Zhang, L., Lu, P., Leppäranta, M., & Li, G. (2011). Experimental study on the effect of porosity on the uniaxial compressivestrength of sea ice in Bohai Sea. Science China Technological Sciences, 54(9), 2429–2436.

Lieblappen, R.M., Golden, E.J., & Obbard, R.W. (2017). Metrics for interpreting the microstructure of sea ice using X-raymicro-computed tomography. Cold Regions Science and Technology, 138, 24–35.

Lieblappen, R.M., Kumar, D.D., Pauls, S.D., & Obbard, R.W. (2018). A network model for characterizing brine channels in seaice. The Cryosphere, 12(3), 1013–1026.

Lietaer, O. (2011). Finite Element Methods for Sea Ice Modeling [PhD thesis]. Université Catholique de Louvain.Lietaer, O., Fichefet, T., & Legat, V. (2008). The effects of resolving the Canadian arctic archipelago in a finite element sea icemodel. Ocean Modelling, 24(3–4), 140–152.

Liferov, P., & Høyland, K.V. (2004). In-situ ice ridge scour tests: experimental set up and basic results. Cold Regions Scienceand Technology, 40(1–2), 97–110.

Light, B., Maykut, G.A., & Grenfell, T.C. (2003). Effects of temperature on the microstructure of first-year Arctic sea ice.Journal of Geophysical Research: Oceans, 108(C2).

Linder, C., & Armero, F. (2009). Finite elements with embedded branching. Finite Elements in Analysis and Design, 45(4),280–293.

Lindsay, R., Zhang, J., & Rothrock, D. (2003). Sea-ice deformation rates from satellite measurements and in a model. Atmosphere-Ocean, 41(1), 35–47.

Liu, R., Yan, J., & Li, S. (2020). Modeling and simulation of ice–water interactions by coupling peridynamics with updatedLagrangian particle hydrodynamics. Computational Particle Mechanics, 7(2), 241–255.

Losch, M., & Danilov, S. (2012). On solving the momentum equations of dynamic sea ice models with implicit solvers and theelastic–viscous–plastic technique. Ocean Modelling, 41, 42–52.

Losch, M., Fuchs, A., Lemieux, J.-F., & Vanselow, A. (2014). A parallel Jacobian-free Newton–Krylov solver for a coupled seaice-ocean model. Journal of Computational Physics, 257, 901–911.

Lu, P., Li, Z.J., Zhang, Z.H., & Dong, X.L. (2008). Aerial observations of floe size distribution in the marginal ice zone ofsummer Prydz Bay. Journal of Geophysical Research: Oceans, 113(C2).

Lu, W., Løset, S., Shestov, A., & Lubbad, R. (2015). Design of a field test for measuring the fracture toughness of sea ice.In POAC ’15: Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions.Port and Ocean Engineering under Arctic Conditions (POAC).

Lüpkes, C., Gryanik, V., Witha, B., Gryschka, M., Raasch, S., & Gollnik, T. (2008). Modeling convection over arctic leads withLES and a non-eddy-resolving microscale model. Journal of Geophysical Research: Oceans, 113(C9).

Lytle, V., & Ackley, S. (2001). Snow-ice growth: a fresh-water flux inhibiting deep convection in the Weddell Sea, Antarctica.Annals of Glaciology, 33, 45–50.

Mackey, T., Wells, J., Jordaan, I., & Derradji-Aouat, A. (2007). Experiments on the fracture of polycrystalline ice.In POAC ‘07: Proceedings of the 19th International Conference on Port and Ocean Engineering under Arctic Conditions(pp. 339–349). Port and Ocean Engineering under Arctic Conditions (POAC).

Maksym, T., Stammerjohn, S.E., Ackley, S., & Massom, R. (2012). Antarctic sea ice – A polar opposite?. Oceanography, 25(3),140–151.

Manley, J., & Willcox, S. (2010). The Wave Glider: A persistent platform for ocean science. In OCEANS’10 IEEE SYDNEY(pp. 1–5). IEEE.

Manninen, T., Lahtinen, P., Anttila, K., & Riihelä, A. (2016). Detection of snow surface roughness and hoar at Summit, Greenland,using RADARSAT data. International Journal of Remote Sensing, 37(12), 2860–2880.

Marquart, R., Bogaers, A., Skatulla, S., Alberello, A., Toffoli, A., Schwarz, C., & Vichi, M. (2021). A computational fluiddynamics model for the small-scale dynamics of wave, ice floe and interstitial grease ice interaction. Fluids, 6(5), 176.

Marsland, S., Haak, H., Jungclaus, J., Latif, M., & Röske, F. (2003). The MaxPlanck-Institute global ocean/sea ice model withorthogonal curvilinear coordinates. Ocean Modelling, 5(2), 91–127.

Martinson, D.G., & Wamser, Ch. (1990). Ice drift and momentum exchange in winter Antarctic pack ice. Journal of GeophysicalResearch: Oceans, 95(C2), 1741–1755.

Massom, R.A., Eicken, H., Hass, C., Jeffries, M.O., Drinkwater, M.R., Sturm, M., Worby, A.P., Wu, X., Lytle, V.I., Ushio, S.,Morris, K., Reid, P.A., Warren, S.G., & Allison, I. (2001). Snow on Antarctic sea ice. Reviews of Geophysics, 39(3), 413–445.

Maus, S., Schneebeli, M., & Wiegmann, A. (2021). An X-ray microtomographic study of the pore space, permeability andpercolation threshold of young sea ice. The Cryosphere, 15(8), 4047–4072.

Maykut, G.A. (1982). Large-scale heat exchange and ice production in the central Arctic. Journal of Geophysical Research:Oceans, 87(C10), 7971–7984.

Maykut, G.A., & Untersteiner, N. (1971). Some results from a time-dependent thermodynamic model of sea ice. Journal ofGeophysical Research, 76(6), 1550–1575.

McGuinness, M.J. (2007). Modelling sea ice growth. The ANZIAM Journal, 50(3).

McNutt, L., Digby, S., Carsey, F., Holt, B., Crawford, J., Tang, C.L., Gray, A.L., & Livingstone, C. (1988). Limex’87: TheLabrador ice margin experiment, March 1987 – a pilot experiment in anticipation of RADARSAT and ERS 1 data. Eos,Transactions American Geophysical Union, 69(23), 634–643.

Mehlmann, C., & Korn, P. (2021). Sea-ice dynamics on triangular grids. Journal of Computational Physics, 428, 110086.

Mehlmann, C., & Richter, T. (2017a). A modified global Newton solver for viscous-plastic sea ice models. Ocean Modelling,116, 96–107.

Mehlmann, C., & Richter, T. (2017b). A finite element multigrid-framework to solve the sea ice momentum equation. Journalof Computational Physics, 348, 847–861.

Mehlmann, C., Danilov, S., Losch, M., Lemieux, J.-F., Hutter, N., Richter, T., Blain, P., Hunke, E., & Korn, P. (2021). Simulatinglinear kinematic features in viscous-plastic sea ice models on quadrilateral and triangular grids with different variablestaggering. Journal of Advances in Modeling Earth Systems, 13(11), e2021MS002523.

Mellor, M., & Hawkes, I. (1971). Measurement of tensile strength by diametral compression of discs and annuli. EngineeringGeology, 5(3), 173–225.

Meschke, G., Leonhart, D., Timothy, J.J., & Meng-Meng, Z. (2011). Computational mechanics of multiphase materials – modelingstrategies at different scales. Computer Assisted Methods in Engineering and Science, 18(1–2), 73–89.

Middleton, C.A., Thomas, C., de Wit, A., & Tison, J.-L. (2016). Visualizing brine channel development and convective processesduring artificial sea-ice growth using Schlieren optical methods. Journal of Glaciology, 62(231).

Miehe, C., & Gürses, E. (2007). A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptivemesh alignment. International Journal for Numerical Methods in Engineering, 72(2), 127–155.

Miehe, C., Welschinger, F., & Hofacker, M. (2010). Thermodynamically consistent phase-field models of fracture: Variationalprinciples and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 83(10),1273–1311.

Mintu, S., Molyneux, D., & Oldford, D. (2016). A State-of-the-art review of research on ice accretion measurements and modelling.In Arctic Technology Conference. October 24–26, 2016. St. John’s, Newfoundland and Labrador, Canada (pp. 1–18).

Morawetz, K., Thoms, S., & Kutschan, B. (2017). Formation of brine channels in sea ice. The European Physical Journal E,40(3), 25.

Moritz, R.E., Bitz, C.M., & Steig, E.J. (2002). Dynamics of recent climate change in the Arctic. Science, 297(5586), 1497–1502.

Moslet, P.O. (2007). Field testing of uniaxial compression strength of columnar sea ice. Cold Regions Science and Technology,48(1), 1–14.

Moslet, P.O., Bonnemaire, B., Valkonen, J., Høyland, K.V., Liferov, P., Bjerkås, M., Dybdahl, J., & Løset, S. (2005). Seaice – vertical pile interaction experiment, Part III: test results 2004. In POAC ’05: Proceedings of the 18th InternationalConference on Port and Ocean Engineering under Arctic Conditions (pp. 471–480). Port and Ocean Engineering underArctic Conditions (POAC).

Mukherji, B. (1973). Crack propagation in sea ice: a finite element approach. AIDJEX Bulletin, 18, 69–75.

Mulmule, S., & Dempsey, J. (2000). LEFM size requirements for the fracture testing of sea ice. International Journal of Fracture,102, 85–98.

Munz, D., & Fett, T. (Eds.) (1999). Ceramics. Mechanical Properties, Failure Behaviour, Materials Selection. Springer Berlin,Heidelberg.

Murrell, S.A.F., Sammonds, P.R., & Rist, M.A. (1991). Strength and failure modes of pure ice and multi-year sea ice undertriaxial loading. In S. Jones, J. Tillotson, R.F. McKenna, I.J. Jordaan (Eds.), Ice-Structure Interaction. IUTAM/IAHR SymposiumSt. John’s, Newfoundland Canada 1989 (pp. 339–361). Springer Berlin, Heidelberg.

Nakawo, M. (1983). Measurements on air porosity of sea ice. Annals of Glaciology, 4, 204–208.

Nelli, F., Bennetts, L.G., Skene, D.M., & Toffoli, A. (2020). Water wave transmission and energy dissipation by a floating platein the presence of overwash. Journal of Fluid Mechanics, 889.

Newyear, K. (1999). Comparison of laboratory data with a viscous two-layer model of wave propagation in grease ice. Journalof Geophysical Research: Oceans, 104(C4), 7837–7840.

Nicolaus, M., Hoppmann, M., Arndt, S., Hendricks, S., Katlein, C., Nicolaus, A., Rossmann, L., Schiller, M., & Schwegmann,S. (2021). Snow depth and air temperature seasonality on sea ice derived from snow buoy measurements. Frontiersin Marine Science, 8.

Nixon, W.A., & Schulson, E.M. (1988). The fracture toughness of ice over a range of grain sizes. Journal of Offshore Mechanicsand Arctic Engineering, 110(2), 192–196.

Notz, D. (2005). Thermodynamic and Fluid-Dynamical Processes in Sea Ice [PhD thesis]. University of Cambridge.Notz, D. (2012). Challenges in simulating sea ice in Earth System Models. Wiley Interdisciplinary Reviews: Climate Change,3(6), 509–526.

Notz, D., & Worster, M.G. (2006). A one-dimensional enthalpy model of sea ice. Annals of Glaciology, 44, 123–128.

Oertling, A.B., & Watts, R.G. (2004). Growth of and brine drainage from NaCl-H2O freezing: A simulation of young sea ice.Journal of Geophysical Research: Oceans, 109(C4).

Ouchterlony, F. (1988). International Society for Rock Mechanics commission on Testing Methods. International Journal ofRock Mechanics & Mining Sciences, 25(2), 71–96.

Ozeki, T., Tsuda, M., Yashiro, Y., Fujita, K., & Adachi, S. (2020). Development of artificial surface hoar production systemusing a circuit wind tunnel and formation of various crystal types. Cold Regions Science and Technology, 169, 102889.

Paige, R.A., & Lee, C.W. (1967). Preliminary studies on sea ice in McMurdo Sound, Antarctica, during “Deep Freeze 65”.Journal of Glaciology, 6(46), 515–528.

Pandolfi, A., & Ortiz, M. (2002). An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineeringwith Computers, 18(2), 148–159.

Parkinson, C.L. (2004). Southern Ocean sea ice and its wider linkages: insights revealed from models and observations. AntarcticScience, 16(4), 387–400.

Parsons, B., Snellen, J., & Hill, B. (1986). Physical modeling and the fracture toughness of sea ice. In Reliability and ProbabilisticMethods, Design and Practical Optimization, Fatigue, Fracture/ Corrosion Control, Stresses, Offshore andArctic Materials, Structural Mechanics, Ocean Mining, Ocean Energy (pp. 358–364). The American Soc. of MechanicalEngineers.

Paul, F., Mielke, T., Schwarz, C., Schröder, J., Rampai, T., Skatulla, S., Audh, R., Hepworth, E., Vichi, M., & Lupascu, D.(2021). Frazil ice in the Antarctic marginal ice zone. Journal of Marine Science and Engineering, 9(6), 647.

Persson, P., Fairall, C., Andreas, E., Guest, P., & Perovich, D. (2002). Measurements near the Atmospheric Surface FluxGroup tower at SHEBA: Near-surface conditions and surface energy budget. Journal of Geophysical Research: Oceans,107(C10), SHE 21-1 – SHE 21-35.

Petrich, C., & Eicken, H. (2010). Growth, structure and properties of sea ice. In D.N. Thomas, G.S. Dieckmann (Eds.), Sea Ice(Second ed., pp. 23–77). Blackwell Publishing.

Petrich, C., & Eicken, H. (2017). Overview of sea ice growth and properties. In D.N. Thomas (Ed.), Sea Ice (Third Edition,pp. 1–41). Wiley Blackwell.Polashenski, C., Perovich, D., Richter-Menge, J., & Elder, B. (2011). Seasonal ice mass-balance buoys: adapting tools to thechanging Arctic. Annals of Glaciology, 52(57), 18–26.

Poplin, J., & Wang, A. (1994). Mechanical properties of rafted annual sea ice. Cold Regions Science and Technology, 23(1), 41–67.

Pringle, D.J., Miner, J.E., Eicken, H., & Golden, K.M. (2009). Pore space percolation in sea ice single crystals. Journal ofGeophysical Research: Oceans, 114(12).

Pritchard, R. (2005). Stability of sea ice dynamics models: Viscous-plastic rheology, replacement closure, and tensile cutoff.Journal of Geophysical Research: Oceans, 110(C12).

Provatas, N., & Elder, K. (2010). Phase-Field Methods in Materials Science and Engineering. Wiley-VCH.Quincke, G.H. (1905). The formation of ice and the grained structure of glaciers. Proceedings of The Royal Society A: Mathematical,Physical and Engineering Sciences, 76(512), 431–439.

Rabatel, M., Labbé, S., & Weiss, J. (2015). Dynamics of an assembly of rigid ice floes. Journal of Geophysical Research:Oceans, 120(9), 5887–5909.

Rabault, J., Sutherland, G., Gundersen, O., Jensen, A., Marchenko, A., & Breivik, O. (2020). An open source, versatile, affordablewaves in ice instrument for scientific measurements in the Polar Regions. Cold Regions Science and Technology,170, 102955.

Rampal, P., Weiss, J., & Marsan, D. (2009). Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007.
Journal of Geophysical Research: Oceans, 114(C5).

Rampal, P., Weiss, J., Dubois, C., & Campin, J.M. (2011). IPCC climate models do not capture Arctic sea ice drift acceleration:Consequences in terms of projected sea ice thinning and decline. Journal of Geophysical Research: Oceans, 116(C8).

Rampal, P., Bouillon, S., Ólason, E., & Morlighem, M. (2016). neXtSIM: a new Lagrangian sea ice model. The Cryosphere,10(3), 1055–1073.

Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., & Kaplan, A. (2003). Globalanalyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journalof Geophysical Research: Atmospheres, 108(D14).

Rees Jones, D.W. & Grae Worster, M. (2014). A physically based parameterization of gravity drainage for sea-ice modeling.Journal of Geophysical Research: Oceans, 119(9), 5599–5621.

Ren, H., Zhang, C., & Zhao, X. (2021). Numerical simulations on the fracture of a sea ice floe induced by waves. AppliedOcean Research, 108, 102527.

Richter-Menge, J.A. (1992). US research in ice mechanics: 1987–1990. Cold Regions Science and Technology, 20(3), 231–246.

Richter-Menge, J.A., Cox, G.F., Perron, N., Durell, G., & Bosworth, H.W. (1986). Triaxial Testing of First-Year Sea Ice.CRREL Report 86-16.

Richter-Menge, J.A., Claffey, K., & Walsh, M.R. (1993). End-capping procedure for cored ice samples used in tension tests.Journal of Glaciology, 39(133), 698–700.

Ricken, T., & Bluhm, J. (2010). Modeling fluid saturated porous media under frost attack. GAMM-Mitteilungen, 33(1), 40–56.

Ricken, T., & de Boer, R. (2003). Multiphase flow in a capillary porous medium. Computational Materials Science, 28(3–4),704–713.

Ringeisen, D., Losch, M., Tremblay, L.B., & Hutter, N. (2019). Simulating intersection angles between conjugate faults in seaice with different viscous–plastic rheologies. The Cryosphere, 13(4), 1167–1186.

Rist, M.A., Sammonds, P.R., Murrell, S.A., Meredith, P.G., Doake, C.S., Oerter, H., & Matsuki, K. (1999). Experimental andtheoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing. Journal of Geophysical Research:Solid Earth, 104(B2), 2973–2987.

Roach, L.A., Horvat, C., Dean, S.M., & Bitz, C.M. (2018). An emergent sea ice floe size distribution in a global coupled oceanseaice model. Journal of Geophysical Research: Oceans, 123(6), 4322–4337.

Rogers, W.E., Thomson, J., Shen, H.H., Doble, M.J., Wadhams, P., & Cheng, S. (2016). Dissipation of wind waves by pancakeand frazil ice in the autumn Beaufort Sea. Journal of Geophysical Research: Oceans, 121(11), 7991–8007.

Ryerson, Ch.C. (2013). Icing Management for Coast Guard Assets. ERDC/CRREL TR-13-7. Cold Regions Research andEngineering Laboratory.Saeki, H., Ono, T., Zong, N.E., & Nakazawa, N. (1985). Experimental study on direct shear strength of sea ice. Annals ofGlaciology, 6, 218–221.

Sakharov, A., Karulin, E., Marchenko, A., Karulina, M., & Chistyakov, P. (2019). Mechanism of shear collapse in sea ice.In Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions, June 9–13,2019, Delft, The Netherlands.

Sammonds, P.R., Murrell, S.A., & Rist, M.A. (1998). Fracture of multiyear sea ice. Journal of Geophysical Research: Oceans,103(C10), 21795–21815.

Samuelsen, E.M., Løset, S., & Edvardsen, K. (2015). Marine icing observed on KV Nordkapp during a cold air outbreak witha developing polar low in the Barents sea. In Proceedings of the 23rd International Conference on Port and Ocean Engineeringunder Arctic Conditions, June 14–18, 2015, Trondheim, Norway.

Sand, B. (2008). Nonlinear Finite Element Simulations of Ice Forces on Offshore Structures [PhD thesis]. Luleå University ofTechnology.

Schneck, C.C., Ghobrial, T.R., & Loewen, M.R. (2019). Laboratory study of the properties of frazil ice particles and flocs inwater of different salinities. The Cryosphere, 13(10).

Schulkes, R.M.S.M. (1996). Asymptotic stability of the viscous-plastic sea ice rheology. Journal of Physical Oceanography,26(2), 279–283.

Schulson, E.M. (1999). The structure and mechanical behavior of ice. JOM, 51(2), 21–27.

Schulson, E.M. (2001). Brittle failure of ice. Engineering Fracture Mechanics, 68(17–18), 1839–1887.

Schulson, E.M., & Duval, P. (2009). Creep and Fracture of Ice. Cambridge University Press.

Schulson, E.M., Fortt, A.L., Iliescu, D., & Renshaw, C.E. (2006). Failure envelope of first-year arctic sea ice: The role of frictionin compressive fracture. Journal of Geophysical Research: Oceans, 111(C11).

Schwarz, A., Bluhm, J., & Schröder, J. (2020). Modeling of freezing processes of ice floes within the framework of the TPM.Acta Mechanica, 231, 3099–3121.

Schwarz, A., Bluhm, J., & Schröder, J. (2021). Investigations on modeling of freezing processes within the framework of thetheory of porous media. PAMM, 20(1), e202000251.

Schwarz, J., Frederking, R., Gavrillo, V., Petrov, I., Hirayama, K.-I., Mellor, M., Tryde, P., & Vaudrey, K. (1981). Standardizedtesting methods for measuring mechanical properties of ice. Cold Regions Science and Technology, 4(3), 245–253.

Sellers, W. (1969). A global climatic model based on the energy balance of the Earth-atmosphere system. Journal of AppliedMeteorology and Climatology, 8(3), 392–400.

Setzer, M. (2001). Micro-ice-lens formation in porous solid. Journal of Colloid and interface science, 243(1), 193–201.

Shen, H., Perrie, W., Hu, Y., & He, Y. (2018). Remote sensing of waves propagating in the marginal ice zone by SAR. Journalof Geophysical Research: Oceans, 123(1), 189–200.

Shen, H.H. (2019). Modelling ocean waves in ice-covered seas. Applied Ocean Research, 83, 30–36.

Shen, H.H., & Squire, V.A. (1998). Wave damping in compact pancake ice fields due to interactions between pancakes.In M.O. Jeffries (Ed.), Antarctic Sea Ice: Physical Processes, Interactions and Variability (pp. 325–341). American GeophysicalUnion.

Shen, H.H., Hibler III, W.D., & Leppäranta, M. (1987). The role of floe collisions in sea ice rheology. Journal of GeophysicalResearch: Oceans, 92(C7), 7085–7096.

Shen, H.H., Ackley, S.F., & Hopkins, M.A. (2001). A conceptual model for pancake-ice formation in a wave field. Annals ofGlaciology, 33(3), 361–367.

Shokr, M., & Sinha, N. (2015). Sea Ice. Physics and Remote Sensing. John Wiley & Sons.Sinha, N.K. (1984). Uniaxial compressive strength of first-year and multiyear sea ice. Canadian Journal of Civil Engineering,11(1), 82–91.

Sinha, N.K. (1986). Young Arctic frazil sea ice: Field and laboratory strength tests. Journal of Materials Science, 21(5), 1533–1546.

Skene, D., Bennetts, L., Meylan, M., & Toffoli, A. (2015). Modelling water wave overwash of a thin floating plate. Journal ofFluid Mechanics, 777.

Smedsrud, L.H. & Skogseth, R. (2006). Field measurements of Arctic grease ice properties and processes. Cold Regions Scienceand Technology, 44(3), 171–183.

Snyder, S.A., Schulson, E.M., & Renshaw, C.E. (2015). The role of damage and recrystallization in the elastic properties ofcolumnar ice. Journal of Glaciology, 61(227), 461–480.

Sodhi, D.S., & Hibler III, W.D. (1980). Nonsteady ice drift in the strait of belle isle. In R.S. Pritchard (Eds.), Sea Ice Processesand Models. Proceedings of the Arctic Ice Dynamics Joint Experiment International Commission of Snow and Ice Symposium(pp. 177–186). University of Washington Press.

Song, J.-H., & Belytschko, T. (2009). Cracking node method for dynamic fracture with finite elements. International Journalfor Numerical Methods in Engineering, 77, 360–385.

Song, J.-H., Areias, P.M.A., & Belytschko, T. (2006). A method for dynamic crack and shear band propagation with phantomnodes. International Journal for Numerical Methods in Engineering, 67(6), 868–893.

Song, J.-H., Wang, H., & Belytschko, T. (2008). A comparative study on finite element methods for dynamic fracture. ComputationalMechanics, 42(2), 239–250.

Squire, V.A. (2018). A fresh look at how ocean waves and sea ice interact. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 376(2129), 20170342.

Squire, V.A. (2020). Ocean wave interactions with sea ice: a reappraisal. Annual Review of Fluid Mechanics, 52(1), 37–60.

Squire, V.A., Dugan, J.P., Wadhams, P., Rottier, P.J., & Liu, A.K. (1995). Of ocean waves and sea ice. Annual Review of FluidMechanics, 27(1), 115–168.

Stammerjohn, S., & Maksym, T. (2017). Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms.In D.N. Thomas (Ed.), Sea Ice (Third ed., pp. 261–289). Wiley Blackwell.Stefan, J. (1891). Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Annalen der Physik,278(2), 269–286.

Stehn, L. (1991). Fracture toughness of low salinity sea ice using short rod chevron notched specimens. In D.B. Muggeridge,D.B. Colbourne & H.M. Muggeridge (Eds.), Proceedings – 11th International Conference on Port and Ocean EngineeringUnder Arctic Conditions. St. Jones, Canada (Vol. 1, pp. 541–555). Ocean Engineering Research Centre.Stehn, L. (1994). Fracture toughness and crack growth of brackish ice using chevron-notched specimens. Journal of Glaciology,40(135), 415–426.

Stopa, J.E., Sutherland, P., & Ardhuin, F. (2018). Strong and highly variable push of ocean waves on Southern Ocean sea ice.Proceedings of the National Academy of Sciences, 115(23), 5861–5865.

Strong, C., & Rigor, I.G. (2013). Arctic marginal ice zone trending wider in summer and narrower in winter. Geophysical ResearchLetters, 40(18), 4864–4868.

Style, R.W., & Worster, M.G. (2009). Frost flower formation on sea ice and lake ice. Geophysical Research Letters, 36(11),20–23.

Sutherland, G., Rabault, J., Christensen, K.H., & Jensen, A. (2019). A two layer model for wave dissipation in sea ice. AppliedOcean Research, 88, 111–118.

Tastula, E.-M., Vihma, T., & Andreas, E.L. (2012). Evaluation of Polar WRF from modeling the atmospheric boundary layerover Antarctic sea ice in autumn and winter. Monthly Weather Review, 140(12), 3919–3935.

Tastula, E.-M., Vihma, T., Andreas, E.L., & Galperin, B. (2013). Validation of the diurnal cycles in atmospheric reanalyses overAntarctic sea ice. Journal of Geophysical Research: Atmospheres, 118(10), 4194–4204.

Thomas, D.N. (2017). Sea Ice (Third Edition). Wiley Blackwell.Thoms, S., Kutschan, B., & Morawetz, K. (2014). Phase-Field Theory of Brine Entrapment in Sea Ice: Short-Time FrozenMicrostructures. ArXiv.

Thomson, J. (2012). Wave breaking dissipation observed with “SWIFT” drifters. Journal of Atmospheric and Oceanic Technology,29(12), 1866–1882.

Thomson, J., & Persson, O. (2021). Arctic Sea State 2015 Field Campaign, Version 1 [Data Set]. National Snow and Ice Data Center.

Thomson, J., Squire, V.A., Ackley, S., Rogers, E., Babanin, A., Guest, P., Maksym, T., Wadhams, P., Stammerjohn, S., Fairall, C.,Persson, O., Doble, M., Graber, H., Shen, H., Gemmrich, J., Lehner, S., Holt, B., Williams, T., Meylan, M., & Bidlot, J.(2013). Sea State and Boundary Layer Physics of the Emerging Arctic Ocean. Technical Report APL-UW TR1306.

Applied Physics Laboratory, University of Washington.Thomson, N.R., Sykes, J.F., & McKenna, R.F. (1988). Short-term ice motion modeling with application to the Beaufort Sea.Journal of Geophysical Research: Oceans, 93(C6), 6819–6836.

Thorndike, A.S., & Colony, R. (1982). Sea ice motion in response to geostrophic winds. Journal of Geophysical Research:Oceans, 87(C8), 5845–5852.

Thorndike, A.S., Rothrock, D.A., Maykut, G.A., & Colony, R. (1975). The thickness distribution of sea ice. Journal of GeophysicalResearch, 80(33), 4501–4513.

Tiller, W.A., Jackson, K.A., Rutter, J.W., & Chalmers, B. (1953). The redistribution of solute atoms during the solidification ofmetals. Acta Metallurgica, 1(4), 428–437.

Timco, G.W., & Frederking, R.M.W. (1983). Flexural strength and fracture toughness of sea ice. Cold Regions Science andTechnology, 8(1), 35–41.

Timco, G.W., & Frederking, R.M.W. (1986). Confined compression tests: Outlining the failure envelope of columnar sea ice.Cold Regions Science and Technology, 12(1), 13–28.

Timco, G.W., & Frederking, R.M.W. (1990). Compressive strength of sea ice sheets. Cold Regions Science and Technology,17(3), 227–240.

Timco, G.W., & O.’Brien, S. (1994). Flexural strength equation for sea ice. Cold Regions Science and Technology, 22(3),285–298.

Timco, G.W., & Weeks, W. (2010). A review of the engineering properties of sea ice. Cold Regions Science and Technology,60(2), 107–129.

Timmermann, R., Danilov, S., Schröter, J., Böning, C., Sidorenko, D., & Rollenhagen, K. (2009). Ocean circulation and sea icedistribution in a finite element global sea ice–ocean model. Ocean Modelling, 27(3–4), 114–129.

Tison, J.L., Maksym, T., Fraser, A.D., Corkill, M., Kimura, N., Nosaka, Y., Nomura, D., Vancoppenolle, M., Ackley, S., Stammerjohn,S., Wauthy, S., Van der Linden, F., Carnat, G., Sapart, C., de Jong, J., Fripiat, F., & Delille, B. (2020). Physicaland biological properties of early winter Antarctic sea ice in the Ross Sea. Annals of Glaciology, 61(83), 241–259.

Toffoli, A., Bennetts, L.G., Meylan, M.H., Cavaliere, C., Alberello, A., Elsnab, J., & Monty, J.P. (2015). Sea ice floes dissipatethe energy of steep ocean waves. Geophysical Research Letters, 42(20), 8547–8554.

Totman, A., Uzorka, O.E., Dempsey, J., & Cole, D. (2007). Sub-size fracture testing of FY sea ice. 6th International Conferenceon Fracture Mechanics of Concrete and Concrete Structures.

Tsamados, M., Feltham, D.L., & Wilchinsky, A.V. (2013). Impact of a new anisotropic rheology on simulations of arctic seaice. Journal of Geophysical Research: Oceans, 118(1), 91–107.

Tuhkuri, J. (1988). The applicability of LEFM and the fracture toughness of sea ice. In W.M. Sackinger, & M.O. Jeffries (Eds.),Port and Ocean Engineering under Arctic Conditions (Vol. 1, pp. 21–32). Geophysical Institute, University of Alaska.

Turner, A.K., Hunke, E.C., & Bitz, C.M. (2013). Two modes of sea-ice gravity drainage: A parameterization for large-scalemodeling. Journal of Geophysical Research: Oceans, 118(5), 2279–2294.

Turner, J., Phillips, T., Marshall, G.J., Hosking, J.S., Pope, J.O., Bracegirdle, T.J., & Deb, P. (2017). Unprecedented springtimeretreat of Antarctic sea ice in 2016. Geophysical Research Letters, 44(13), 6868–6875.

Untersteiner, N. (1961). On the mass and heat budget of Arctic sea ice. Archiv für Meteorologie, Geophysik und Bioklimatologie,Serie A, 12(2), 151–182.

Untersteiner, N., Thorndike, A., Rothrock, D., & Hunkins, K.L. (2007). Aidjex revisited: A look back at the U.S.-CanadianArctic ice dynamics joint experiment 1970–78. Arctic, 60(3), 327–336.

Uotila, P., O‘Farrell, S., Marsland, S., & Bi, D. (2012). A sea-ice sensitivity study with a global ocean-ice model. Ocean Modelling,51, 1–18.

Urabe, N., & Inoue, M. (1988). Mechanical properties of Antarctic sea ice. Journal of Offshore Mechanics and Arctic Engineering,110(4), 403–408.

Urabe, N., & Yoshitake, A. (1981a). Fracture toughness of sea ice – in-situ measurement and its application. In IAHR InternationalSymposium on Ice, Quebec, 1981. Proceedings = Symposium international sur la glace de l’AIRH, Quebec, 1981.

Comptes rendus (pp. 356–365). University Laval.Urabe, N., & Yoshitake, A. (1981b). Strain Rate dependent fracture toughness of pure ice and sea ice. In IAHR InternationalSymposium on Ice, Quebec, 1981. Proceedings = Symposium interna-tional sur la glace de l’AIRH, Quebec, 1981.

Comptes rendus (pp. 551–563). University Laval.Urabe, N., Iwasaki, T., & Yoshitake, A. (1980). Fracture toughness of sea ice. Cold Regions Science and Technology, 3(1),29–37.

Vancoppenolle, M., & Tedesco, L. (2017). Numerical models of sea ice biogeochemistry. In D.N. Thomas (Ed.), Sea Ice(Third ed., pp. 492–515). Wiley Blackwell.

Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., & Maqueda, M. (2009a). Simulating the mass balanceand salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling, 27(1–2), 33–53.

Vancoppenolle, M., Fichefet, T., & Goosse, H. (2009b). Simulating the mass balance and salinity of Arctic and Antarctic seaice. 2. Importance of sea ice salinity variations. Ocean Modelling, 27(1–2), 54–69.

Vancoppenolle, M., Goosse, H., de Montety, A., Fichefet, T., Tremblay, B., & Tison, J. (2010). Modeling brine and nutrientdynamics in Antarctic sea ice: The case of dissolved silica. Journal of Geophysical Research, 115(C2).

Vancoppenolle, M., Meiners, K.M., & Michel, Ch., Bopp, L., Brabant, L., Carnat, G., Delille, B., Lannuzel, D., Madec, G.,Moreau, S., Tison, J.-L., van der Merwe, P. (2013). Role of sea ice in global biogeochemical cycles: emerging views andchallenges. Quaternary Science Reviews, 79, 207–230.

Vancoppenolle, M., Madec, G., Thomas, M., & McDougall, T.J. (2018). Thermodynamics of sea ice phase composition revisited.Journal of Geophysical Research: Oceans, 124(1), 615–634.

Vaudrey, K. (1977). Ice Engineering: Study of Related Properties of Floating Sea-Ice Sheets and Summary of Elastic and ViscoelasticAnalyses. Technical Report R 860. Civil Engineering Laboratory.

Vichi, M., Eayrs, C., Alberello, A., Bekker, A., Bennetts, L., Holland, D., de Jong, E., Joubert, W., MacHutchon, K., Messori,G., Mojica, J.F., Onorato, M., Saunders, C., Skatulla, S., & Toffoli, A. (2019). Effects of an explosive Polar cyclonecrossing the Antarctic marginal ice zone. Geophysical Research Letters, 46(11), 5948–5958.

Voermans, J.J., Rabault, J., Filchuk, K., Ryzhov, I., Heil, P., Marchenko, A., Collins, C.O., Dabboor, M., Sutherland, G., & Babanin,A.V. (2020). Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up. TheCryosphere, 14(11), 4265–4278.

Wadhams, P., Lange, M.A., & Ackley, S.F. (1987). The ice thickness distribution across the Atlantic sector of the AntarcticOcean in midwinter. Journal of Geophysical Research: Oceans, 92(C13), 14535–14552.

Wadhams, P., Parmiggiani, F., & De Carolis, G. (2006). Wave dispersion by Antarctic pancake ice from SAR images: A methodfor measuring ICE thickness. European Space Agency, (Special Publication) ESA SP (613) (unpublished).Wåhlin, J., Leisinger, S., & Klein-Paste, A. (2014). The effect of sodium chloride solution on the hardness of compacted snow.Cold Regions Science and Technology, 102.

Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., & Schröter, J. (2014). The FiniteElement Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geoscientific ModelDevelopement, 7(2), 663–693.

Wang, Q., Li, Z., Lei, R., Lu, P., & Han, H. (2018). Estimation of the uniaxial compressive strength of Arctic sea ice during meltseason. Cold Regions Science and Technology, 151, 9–18.

Wang, R., & Shen, H.H. (2010a). Experimental study on surface wave propagating through a grease-pancake ice mixture. ColdRegions Science and Technology, 61(2–3), 90–96.

Wang, R., & Shen, H.H. (2010b). Gravity waves propagating into an icecovered ocean: A viscoelastic model. Journal of GeophysicalResearch: Oceans, 115(6).Wang, Y.S., & Poplin, J.P. (1988). Laboratory compression tests of sea ice at slow strain rates from a field test program. Journalof Offshore Mechanics and Arctic Engineering, 110(2), 154–158.

Weaver, A.J., Eby, M., Wiebe, E.C., Bitz, C.M., Duffy, P.B., Ewen, T.L., Fanning, A.F., Holland, M.M., MacFadyen, A., Matthews,H.D., Meissner, K.J., Saenko, O., Schmittner, A., Wang, H., & Yoshimori, M. (2001). The UVic Earth SystemClimate Model: Model description, climatology, and applications to past, present and future climates. Atmosphere-Ocean,39(4), 361–428.

Weber, J.E. (1987). Wave attenuation and wave drift in the marginal ice zone. Journal of Physical Oceanography, 17(12),2351–2361.

Weeks, W. (1961). Studies of Salt Ice. Research Report 80. U.S. Cold Regions Research and Engineering Laboratory.Wei, M., & Dai, F. (2021). Laboratory-scale mixed-mode I/II fracture tests on columnar saline ice. Theoretical and AppliedFracture Mechanics, 114, 102982.

Weiss, J., & Dansereau, V. (2017). Linking scales in sea ice mechanics. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 375(2086), 20150352.

Weiss, J., Schulson, E.M., & Stern, H.L. (2007). Sea ice rheology from in-situ, satellite and laboratory observations: Fractureand friction. Earth and Planetary Science Letters, 255(1–2), 1–8.Wells, A.J., Wettlaufer, J.S., & Orszag, S.A. (2013). Nonlinear mushy-layer convection with chimneys: stability and optimalsolute fluxes. Journal of Fluid Mechanics, 716, 203–227.

Wells, A.J., Hitchen, J.R., & Parkinson, J.R.G. (2019). Mushy-layer growth and convection, with application to sea ice. PhilosophicalTransactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2146).

Williams, F.M., Everard, J., & Butt, S. (1992). Ice and snow measurements in support of the operational evaluation of theNathanial B. Palmer in the Antarctic winter environment. Test Report TR-1992-14. National Research Council Canada.

Williams, T.D., Bennetts, L.G., Squire, V.A., Dumont, D., & Bertino, L. (2013). Wave–ice interactions in the marginal ice zone.Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Modelling, 71,92–101.

Wolff, E., Mulvaney, R., & Oates, K. (1988). The location of impurities in Antarctic ice. Annals of Glaciology, 11(1), 194–197.

Xu, X.-P., & Needleman, A. (1994). Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics andPhysics of Solids, 42(9), 1397–1434.

Xu, Z., Tartakovsky, A.M., & Pan, W. (2012). Discrete-element model for the interaction between ocean waves and sea ice.Physical Review E, 85(1), 16703.

Yiew, L.J., Bennetts, L.G., Meylan, M.H., Thomas, G.A., & French, B.J. (2017). Wave-induced collisions of thin floating disks.Physics of Fluids, 29(12), 127102.

Zampieri, L., Kauker, F., Fröhle, J., Sumata, H., Hunke, E.C., & Goessling, H.F. (2021). Impact of sea-ice model complexity onthe performance of an unstructured-mesh sea-ice/ocean model under different atmospheric forcings. Journal of Advancesin Modeling Earth Systems, 13(5), e2020MS002438.

Zhang, J. (2021). Sea ice properties in high-resolution sea ice models. Journal of Geophysical Research: Oceans, 126(1),e2020JC016686.

Zhang, J., & Hibler III, W.D. (1997). On an efficient numerical method for modeling sea ice dynamics. Journal for GeophysicalResearch: Oceans, 102(C4), 8691–8702.

Zhang, J., & Rothrock, D. (2001). A thickness and enthalpy distribution sea-ice model. Journal of Physical Oceanography,31(10), 2986–3001.

Zhang, J., Rothrock, D., & Steele, M. (2000). Recent changes in Arctic Sea ice: The interplay between ice dynamics and thermodynamics.Journal of Climate, 13(17), 3099–3114.

Zhao, X., & Shen, H.H. (2015). Wave propagation in frazil/pancake, pancake, and fragmented ice covers. Cold Regions Scienceand Technology, 113, 71–80.

Zhao, X., & Shen, H.H. (2018). Three-layer viscoelastic model with eddy viscosity effect for flexural-gravity wave propagationthrough ice cover. Ocean Modelling, 131, 15–23.

Zhou, M., & Meschke, G. (2011). Numerical modelling of coupling mechanisms during freezing in porous materials. Proceedingsin Applied Mathematics and Mechanics, 11(1), 495–496.

Zhou, M.-M. (2013). Computational Simulation of Soil Freezing: Multiphase Modeling and Strength Upscaling [PhD thesis].Ruhr University Bochum.Zong, Z. (2022). A Random Pore Model of sea ice for predicting its mechanical properties. Cold Regions Science and Technology,195, 103473.