FE and physical modelling of plastic deformation the two-layer Mg/Al materials

FE and physical modelling of plastic deformation the two-layer Mg/Al materials

Sebastian Mróz, Andrzej Stefanik, Piotr Szota

Czestochowa University of Technology, 19 Armii Krajowej Str., 42-200 Częstochowa, Poland.

DOI:

https://doi.org/10.7494/cmms.2017.3.0600

Abstract:

The paper has presented the results of theoretical studies and experimental tests of the plastic deformation of two-layered Mg/Al specimens. Theoretical studies were carried out using the Forge2011® computer program. Physical modeling, on the other hand, was performed using the Gleeble3800 simulator.Cuboidal specimens with dimensions of 10x15x20 mm and a cladding layer thickness of 1.5 mm were cut off from the sheets obtained in the explosive welding method. The theoretical studies and experimental tests were carried out for the temperature range from 300 to 400°C and for different strain rates. Based on the obtained investigation results it has been found that the main parameters influencing the formability of two-layered Mg/Al materials are temperature and the strain rate.

Cite as:

Mróz, S., Stefanik, A., Szota, P. (2017). FE and physical modelling of plastic deformation the two-layer Mg/Al materials. Computer Methods in Materials Science, 17(3), 148 – 155. https://doi.org/10.7494/cmms.2017.3.0600

Article (PDF):

Keywords:

Mg/Al materials, Plastic deformation, Physical modelling, Numerical modelling, FEM

References:

Bae, J.H., Prasada Rao A.K., Kim K.H., Kim N.J., 2011, Claddingof Mg alloy with Al by twin-roll casting, Scr. Mat.,64, 836-839.

Binotsch C., Feuerhack A., Awiszus B., Handel M., Nickel D.,Dietrich D., 2014, Forming of co-extruded Al-Mg hybridcompounds, Meform 2014, Altenberg, Saxony, ConferenceProcedings, 94-107.

Chang, H., Zheng, M.Y., Gan, W.M., Wu, K., Maawad, E.,Brokmeier, H.G., 2009, Texture evolution of the Mg/Allaminated composite fabricated by the accumulative rollbonding, Scr. Mat., 61, 717-720.

Hensel, A., Spittel, T., 1979, Kraft und Arbeitsbedarf BildsomerFormgeburgs. Verfahren, VEB Deutscher Verlang fürGrundstoffindustrie, Lipsk (in German).

Hoff, N.J., 1954, Approximate analysis of structures in thepresence of moderately large steps deformation, Quart,Appl. Mech., 2, 49.

Kainer, K.U., 2004, Magnesium – Alloys and Technology,Wiley-VCH Verlag GmbH & Co. KGaA.Kittner K., Binotsch C., Awiszus B., 2010, Models for Determinationof Interface Strength and Quality of Aluminum-Magnesium Compounds, Steel Res. Int., 81(9), 454-457.

Li, X., Liang, W., Zhao, X., Zhang, Y., Fu, X., Liu, F., 2009,Bonding of Mg and Al with Mg-Al eutectic alloy and itsapplication in aluminum coating on magnesium, J. Alloysand Comp., 471, 408-411.

Luo Ch., Liang W., Chen Z., Zhang J., Chi Ch., Yang F., 2013,Effect of high temperature annealing and subsequent hotrolling on microstructural evolution at the bond-interfaceof Al/Mg/Al alloy laminated composites, Mat. Charact.,84, 34-40.

Matsumoto, H., Watanabe, S., Hanada, S., 2005, Fabrication ofpure Al/Mg-Li alloy clad plate and its mechanical properties,J. of Mat. Proc. Techn., 169, 9-15.

Mróz, S., 2008, Proces walcowania prętów z wzdłużnymrozdzielaniem pasma, Wydawnictwo PolitechnikiCzęstochowskiej, Seria: Monografie 138, Częstochowa(in Polish).

Mróz, S., Stradomski, G., Dyja, H., Galka, A., 2015, Using theexplosive cladding method for production of Mg-Al bimetallicbars, Arch. of Civil and Mech. Eng., 15(2), 317-323.

Mróz, S., 2015, Teoretyczno-technologiczne podstawywalcowania prętów bimetalowych w wykrojach, SeriaMonografie, 45, Czestochowa, (in Polish).

Mróz, S., Szota, P., Bajor, T., Stefanik, A., 2016, Formability ofExplosive Welded Mg/Al Bimetallic Bar, Key Eng.Mat., 716, 114-120.

Neugebauer R., Glaß R., Popp M., Porstmann S., Kittner K.,2011, Indirect extrusion of semi-finished aluminiummagnesiumcompounds, Mat.-wiss. u.Werkstofftech,42(7), 585-592.

Norton, F.H., 1929, Creep of steel at high temperature, McGrawHill, New York.Przondziono, J., Hadasik, E., Walke, W., Szala, J., Wieczorek,J., 2014, Resistance to Electrochemical Corrosion of ExtrudedMagnesium Alloy AZ61, Key Eng. Mat., 607, 31-36.

Tokunaga, T., Matsuura, K., Ohno, M., 2012, Aluminum coatingon Magnesium-Based alloy by hot extrusion and itscharacteristics, Mat. Trans., 53, 1034-1041.

Tokunaga, T., Szeliga, D., Matsuura, K., Ohno, M., Pietrzyk,M., 2015, Sensitivity analysis for thickness uniformityof Al coating layer in extrusion of Mg/Al clad bar, Int. J.of Adv. Man. Techn., 80, 507-513.

Zhang, X. P., Yang, T.H., Castagne, S., Wang, J.T., 2011, Microstructure;bonding strength and thickness ratio ofAl/Mg/Al alloy laminated composites prepared by hotrolling, Mat. Sc. Eng. A, 528, 1954-1960.

Zhu, B., Liang, W., Li, X., 2011, Interfacial microstructure,bonding strength and fracture of Magnesium-Aluminumlaminated composite plates fabricated by direct hotpressing, Mat. Sc. Eng. A, 528, 6584-6588.