Texture evolution in Mg during rolling with a change of deformation path – a modeling approach

Texture evolution in Mg during rolling with a change of deformation path – a modeling approach

Bartosz Sułkowski

AGH University of Science and Technology, Department of Non-Ferrous Metals Engineering, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland.

DOI:

https://doi.org/10.7494/cmms.2022.2.0788

Abstract:

The weakening of strong textures in Mg alloys is a crucial factor in obtaining good quality final products that are less anisotropic. Considerable attention has been focused on experiments to find the optimal chemical composition of alloys or processing conditions. However, to reduce time-consuming experiments, texture simulations can help in specifying future research directions. In the present work, the texture evolution in rolled Mg and its alloys was studied using the viscoplastic self-consistent model. The texture simulations presented in the study cover unidirectional rolling, reverse rolling, and cross rolling of Mg and its alloys to check if the change in deformation path has an impact on the activation of non-basal slip systems. The results obtained in the study may help to design the best processing technology and reduce the mechanical anisotropy of magnesium alloys. Slip systems such as basal, prismatic, and pyramidal were taken into consideration. To reflect the effect of alloying elements on hardening, different values for critical resolved shear stress were considered. Pole figures and slip system activity were investigated to understand the texture evolution during rolling as the deformation path changes. It was found that cross rolling may be the most effective processing technology to reduce strong textures during the rolling of Mg alloys. To activate non-basal systems, critical resolved shear stresses and the Schmid factor must be modified. The former can be changed by increasing the processing temperature, proper alloying elements, or change in the strain rate sensitivity; the latter by changing the deformation path.

Cite as:

Sułkowski, B. (2022). Texture evolution in Mg during rolling with a change of deformation path – a modeling approach. Computer Methods in Materials Science, 22(2), 101–109. https://doi.org/10.7494/cmms.2022.2.0788

Article (PDF):

Keywords:

Mg, Deformation path, Modelling, Texture

References:

Akhtar, A., & Teghtsoonian, E. (1969a). Solid solution strengthening of magnesium single crystals – I alloying behaviour in basal slip. Acta Metallurgica, 17(11), 1339–1349. https://doi.org/10.1016/0001-6160(69)90151-5.

Akhtar, A., & Teghtsoonian, E. (1969b). Solid solution strengthening of magnesium single crystals – II the effect of solute on the ease of prismatic slip. Acta Metallurgica, 17(11), 1351–1356. https://doi.org/10.1016/0001-6160(69)90152-7.

Akhtar, A., & Teghstoonian, E. (1972). Substitutional solution hardening of magnesium single crystals. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 25(4), 897–916. https://doi.org/10.1080/14786437208229311.

Al-Samman, T. (2009). Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy. Acta Materialia, 57(7), 2229–2242. https://doi.org/10.1016/j.actamat.2009.01.031.

Biswas, S., Dhinwal, S.S., & Suwas, S. (2010). Room-temperature equal channel angular extrusion of pure magnesium. Acta Materialia, 58(9), 3247–3261. https://doi.org/10.1016/j.actamat.2010.01.051.

Bonarski, B.J., Schafler, E., Mikulowski, B., & Zehetbauer, M.J. (2010). Effects of recrystallization on texture, microstructure and mechanical properties in HPT-deformed pure Mg. Journal of Physics: Conference Series, 240, 012133, https://doi.org/10.1088/1742-6596/240/1/012133.

Britton, T.B., Dunne, F.P.E., & Wilkinson, A.J. (2015). On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals. Proceedings of the Royal Society A, 471(2178). https://doi.org/10.1098/rspa.2014.0881.

Chapuis, A., & Liu, Q. (2019). Modeling strain rate sensitivity and high temperature deformation of Mg-3Al-1Zn alloy. Journal of Magnesium and Alloys, 7(3), 433–443. https://doi.org/10.1016/j.jma.2019.04.004.

Chapuis, A., Wang, Z., & Liu, Q. (2016). Influence of material parameters on modeling plastic deformation of Mg alloys. Materials Science & Engineering: A, 655, 244–250, https://doi.org/10.1016/j.msea.2015.12.067.

Chino, Y., Sassa, K., Kamiya, A., & Mabuchi, M. (2006). Influence of rolling routes on press formability of a rolled AZ31 Mg alloy sheet. Materials Transactions, 47(10), 2555–2560. https://doi.org/10.2320/matertrans.47.2555.

Choquechambi Catorceno, L.L., Abreu, H.F.G., de, & Padhila, A.F. (2018). Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet. Journal of Magnesium and Alloys, 6(2), 121–133. https://doi.org/10.1016/j.jma.2018.04.004.

Hutchinson, W.B., & Barnett, M.R. (2010). Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 63(7), 737–740. https://doi.org/10.1016/j.scriptamat.2010.05.047.

Imandoust, A., Barrett, C.D., & Al-Samman, T., Inal, K.A., El Kadiri, A. (2017). A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. Journal of Materials Science, 52(1), 1–29. https://doi.org/10.1007/s10853-016-0371-0.

Kabirian, K., & Khan, A.S. (2015). Anisotropic yield criteria in r–s stress space for materials with yield asymmetry. International Journal of Solids and Structures, 67–68, 116–126. https://doi.org/10.1016/j.ijsolstr.2015.04.006.

Kanghwan, A., & Min-Hong, S. (2018). Effect of anisotropy and differential work hardening on the failure prediction of AZ31B magnesium sheet at room temperature. International Journal of Solids and Structures, 138, 181–192. https://doi.org/10.1016/j.ijsolstr.2018.01.011.

Lopes, V., Puga, H., Gomes, I.V., Peixinho, N., Teixeira, J.C., & Barbosa, J. (2022). Magnesium stents manufacturing: Experimental application of a novel hybrid thin-walled investment casting approach. Journal of Materials Processing Technology, 299, 117339. https://doi.org/10.1016/j.jmatprotec.2021.117339.

Mizelli-Ojdanic, A., Horky, J., Mingler, B., Fanetti, M., Gardonio, S., Valant, M., Sułkowski, B., Schafler, E., Orlov, D., & Zehetbauer, M.J. (2021). Enhancing the mechanical properties of biodegradable Mg alloys processed by warm HPT and thermal treatments. Materials, 14(21), 6399. https://doi.org/10.3390/ma14216399.

Nan, X.-L., Wang, H.-Y., Zhang, L., Li, J.-B., & Jiang, Q.-Ch. (2012). Calculation of Schmid factors in magnesium: Analysis of deformation behaviors. Scripta Materialia, 67(5), 443–446, https://doi.org/10.1016/j.scriptamat.2012.05.042.

Nan, X.-L., Wang, H.-Y., Wu, Z.-Q., Xue, E.-S., Zhang, L., & Jiang, Q.-Ch. (2013). Effect of c/a axial ratio on Schmid factors in hexagonal close-packed metals. Scripta Materialia, 68(7), 530–533, https://doi.org/10.1016/j.scriptamat.2012.12.006.

Nie, J.F., Shin, K.S., & Zeng, Z.R. (2020). Microstructure, deformation, and property of wrought magnesium alloys. Metallurgical and Materials Transactions A, 51(12), 6045–6109. https://doi.org/10.1007/s11661-020-05974-z.

Ojdanic, A., Horky, J., Mingler, B., Fanetti, M., Gardonio, S., Valant, M., Sułkowski, B., Schafler, E., Orlov, D., & Zehetbauer, M.J. (2020). The effects of severe plastic deformation and/or thermal treatment on the mechanical properties of biodegradable Mg-Alloys. Metals, 10(8), 1064, https://doi.org/10.3390/met10081064.

Persaud-Sharma, D., & McGoron, A. (2012). Biodegradable Magnesium Alloys: A Review of material Development and Applications. Journal of Biomimetics, Biomaterials and Tissue Engineering, 3, 25–39. https://doi.org/10.4028/www.scientific.net/JBBTE.12.25.

Prasad, K., Bazaka, O., Chua, M., Rochford, M., Fedrick, L., Spoor, J., Symes, R., Tieppo, M., Collins, C., Cao, A., Markwell, D., Ostrikov, K., & Bazaka, K. (2017). Metallic biomaterials: current challenges and opportunities. Materials, 10(8), 884. https://doi.org/10.3390/ma10080884.

Singh, A.K., & Schwarzer, R.A. (2005). Evolution of texture in pure magnesium during rolling. Zeitschrift für Metallkunde, 96(4), 345–351.

Solomon, E.L.S., Natarajan, A.R., Roy, A.M., Sundararaghavan, V., Van der Ven, A., & Marquis, E.A. (2019). Stability
and strain-driven evolution of β′ precipitate in Mg-Y alloys. Acta Materialia, 166, 148–157,
https://doi.org/10.1016/j.actamat.2018.12.026.

Song, J., She, J., Chen, D., & Pan, F. (2020). Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium and Alloys, 8(1), 1–41. https://doi.org/10.1016/j.jma.2020.02.003.

Sułkowski, B. (2021). The effect of structure and texture on pure magnesium properties. International Journal of Materials Research, 112(1), 57–62, https://doi.org/10.1515/ijmr-2020-7815.

Sułkowski, B., & Chulist, R. (2019). Twin-induced stability and mechanical properties of pure magnesium. Materials Science and Engineering: A, 749, 89–95. https://doi.org/10.1016/j.msea.2019.01.118.

Sułkowski, B., Janoska, M., Boczkal, G., Chulist, R., Mroczkowski, M., & Pałka, P. (2020). The effect of severe plastic deformation on the Mg properties after CEC deformation. Journal of Magnesium and Alloys, 8(3), 761–768. https://doi.org/10.1016/j.jma.2020.04.005.

Suwas, S., & Gurao, N.P. (2008). Crystallographic texture in Materials. Journal of the Indian Institute of Science, 88(2), 151–177.

Suwas, S., & Mondal, S. (2019). Texture evolution in severe plastic deformation processes. Materials Transactions, 60(8), 1457–1471. https://doi.org/10.2320/matertrans.MF201933.

Tadano, Y. (2016). Formability of magnesium sheet with rolling texture. International Journal of Mechanical Sciences, 108–109, 72–82, https://doi.org/10.1016/j.ijmecsci.2016.01.031.

Tan, J., & Ramakrishna, S. (2021). Applications of magnesium and its alloys: A review. Applied Sciences, 11(15), 6861. https://doi.org/10.3390/app11156861.

Wang, H., Wu, P.D., Boyle, K.P., & Neale, K.W. (2011). On crystal plasticity formability analysis for magnesium alloy sheets. International Journal of Solids and Structures, 48, 1000–1010. https://doi.org/10.1016/j.ijsolstr.2010.12.004.

Wang, L., Jiang, J., Ma, A., Li, Y., & Song, D. (2017). Critical review of Mg-based hydrogen storage materials processed by equal channel angular pressing. Metals, 7(9), 324. https://doi.org/10.3390/met7090324.

Zeng, Z., Nie, J.F., Xu, S.-W., Davies, Ch.H.J., & Birbilis, N. (2017). Super-formable pure magnesium at room temperature. Nature Communications, 8, 972. https://doi.org/10.1038/s41467-017-01330-9.

Zhang, H., Huang, G., Kong, D., Sang, G., & Song, B. (2011). Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures. Journal of Materials Processing Technology, 211(10), 1575–1580. https://doi.org/10.1016/j.jmatprotec.2011.04.009.