Cellular Automata model of carbonitrides precipitation process in steels

Cellular Automata model of carbonitrides precipitation process in steels

Przemysław Marynowski, Henryk Adrian, Mirosław Głowacki

1AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.

2The Jan Kochanowski University (JKU), Kielce, Poland.




Cellular Automata (CA) model of carbonitride precipitation in microalloyed steels is presented in the paper. The model accounts for an increase of dislocation density due to plastic deformation and predicts kinetics of precipitation as well as stereological parameters of precipitates. Precipitation of compounds plays crucial role in controlling of properties of alloys. In low alloyed steels the microalloying elements: Ti, Nb, V are added in order to control their microstructure and mechanical properties. The most important tool in development of new processing technologies is numerical modelling. Modelling is a mathematical description of the relation between the main process variables and the resulting material properties. Many thermodynamics models were developed in the second half of the 20th century. For example the model of carbonitrides precipitation in microalloyed steels is considered works of Dutta & Sellars [1], Dutta et al. [2], Dutta et al. [3]. The models allow calculate kinetics of precipitation and stereological parameters of precipitates as a function of processing parameters. CA model proves to be very efficient in modelling various phenomena in materials science. The transition rules transfer the mathematical model and the knowledge regarding precipitation into the cellular automata space.

Cite as:

Marynowski , P., Adrian , H., Głowacki, M. (2018). Cellular Automata model of carbonitrides precipitation process in steels. Computer Methods in Materials Science, 18(4), 120 – 127. https://doi.org/10.7494/cmms.2018.4.0622

Article (PDF):


Cellular Automata, Carbonitrides, Microalloyed steels


Adrian, H., 1992, Thermodynamic model for precipitation of carbonitridesin high strength low alloyed steels up to three microalloyingelements with or without additions of aluminium,Materials Science and Technology, 8, 406-420.

Adrian, H., 2011, Numeryczne modelowanie procesów obróbkicieplnej, Wydawnictwa AGH, Kraków, (in Polish).Adrian, H., Augustyn-Pieniążek, J., Marynowski, P., Matusiewicz,P., 2014, Model kinetyki wydzielania węglikoazotkóww stalach mikrostopowych, Hutnik-Wiadomości Hutnicze,81/4, 208-214, (in Polish).

Dutta, B., Sellars, C.M., 1987, Effect of composition and processvariables on Nb(C,N) precipitation in niobium microalloyedaustenite, Materials Science and Technology, 3, 197-206.

Dutta, B., Valdes, E., Sellars, C.M., 1991, Mechanism and kineticsof strain induced precipitation of Nb (C, N) in austenite,Acta Metallurgica et Materialia, 40, 653-662.

Dutta, B., Palmiere, E.J., Sellars, C.M., 2001, Modelling the kineticsof strain induced precipitation in Nb microalloyedsteels, Acta Materialia, 49, 785-794.

Gladman, T., 1997, The physical metallurgy of microalloyedsteels, Institute of Materials, London.Goldschmidt, H.J., 1967, Interstitial Alloys, Butterworths, London.

Hillert, M., Staffansson, L.I., 1970, Regular solution model forstoichiometric phases and ionic melt, Acta Chemica Scandinavica,24, 3618-3626.

Liu, W., Jonas, J.J., 1989, Calculation of the Ti(CyN1-y) -Ti4C2S2 – MnS austenite equilibrium in Ti-bearing steels,Metallurgical Transactions A, 20A, 1361-74.

Maugis, P., Goune, M., 2005, Kinetics of vanadium carbonitrideprecipitation in steel: A computer model, Acta Materialia,53, 3359-3367.

Perez, M., Dumont, M., Acevedo-Reyes, D., 2008, Implementationof classical nucleation and growth theories for precipitation,Acta Materialia, 56, 2119-2132.

Raabe, D., 1998, Computational Materials Science, Wiley-VCHVerlag GmbH.Roberts, W., Sandberg, A., 1980, The composition of V(C, N) asprecipitated in HSLA steels microalloyed with vanadium,Report IM 1489, Swedish Institute for Metals Research.

Speer, J.G., Michael, J.R., Hansen, S.S., 1987, Carbonitride precipitationin niobium/vanadium microalloyed steels, MetallurgicalTransactions A, 18A, 211-222.

Wagner, R., Kampmann, R., 1991, Homogeneous second phasepracipitation, in: Materials Science and Technology, vol. 5,eds, Cahn, R.W., Haasen, P., Kramer, E.J., VCH VerlagsgesellschaftmbH, 213-302.

Wolfram, S., 1983, Statistical mechanics of cellular automata, Reviewsof Modern Physics, 55, 601-644.