Sedimentation in binary Cu-Sn system

Sedimentation in binary Cu-Sn system

Daria Serafin, Wojciech J. Nowak, Bartek Wierzba

Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland.

DOI:

https://doi.org/10.7494/cmms.2018.4.0620

Abstract:

In the present paper the sedimentation process in binary multiphase Cu-Sn system is presented. The initial samples were produced by GoodFellow, the initial molar fraction was Cu30Sn70 respectively. Thus, the two-phase region was obtained. The two different phenomena occurs during the process. Mainly, the Cu3Sn and Cu6Sn5 phase growth due to the temperature and migration of pure Sn according to the centrifugal force. Both phenomena’s are described by physical equations. The model describing the phase growth based on the Leibnitz rule – the mass conservation law at the moving boundary and the migration of the elements due to the sedimentation is characterized by equation of motion. The results of the presented models are shown.

Cite as:

Serafin, D., Nowak, W., Wierzba, B. (2018). Sedimentation in binary Cu-Sn system. Computer Methods in Materials Science, 18(4), 115 – 121. https://doi.org/10.7494/cmms.2018.4.0620

Article (PDF):

Keywords:

Sedimentation, Diffusion, Mathematical modelling

References:

Anthony, T.R., 1970, Sedimentation in the solid state, ActaMetall., 18, 877-880.

Barr, L.W., Smith, F.A., 1969, Observations on the equilibriumdistribution of gold diffusing in solid potassium in a centrifugalfield, Phil. Mag., 20, 1293-1294.

Danielewski, M., Wierzba, B., Gusak, A., Pawekiewicz, M.,Janczak-Rusch, J., 2011, Chemical interdiffusion in binarysystems; interface barriers and phase competition, J. Appl.Phys. 110, 123705.

Demeler, B., Saber, H., 1998, Determination of molecular parametersby fitting sedimenta-tion data to finite-elementsolutions of the Lamm equation, Biophys. J., 74, 1, 444-454.

Haynes, W. M. 2009. CRC handbook of chemistry and physics:a ready-reference book of chemical and physical data, BocaRaton: CRC Press.

Huang, X., Mashimo, T., Ono, M., Tomita, T., Sawai, T., Osakabe,T., Mori, N., 2004. Effects of ultrastrong gravitationalfield on the crystalline state of a Bi-Sb alloy, J. Appl.Phys., 96, 1336-1340.

Lamm, O., 1929, Die Differentialgleichung der Ultrazentrifugierung,Ark. Mat. Astron. Fys., 21B, 1-4.

Mashimo, T., 1988, Self-consistent approach to the diffusioninduced by a centrifugal field in condensed matter: Sedimentation,Phys. Rev. A., 38, 8, 4149-4154.

Mashimo, T., Okazaki, S., Shibazaki, S., 1996, Ultracentrifugeapparatus to generate a strong acceleration field over1000000 g at a high temperature in condensed matter, Rev.Sci. Instrum., 67, 9, 3170-3197.

Mashimo, T., Ono, M., Huang, X.S., Iguchi, Y., Okayasu, S.,Kobayashi, K., Nakamura, E., 2008, Gravity-induced diffusionof isotope atoms in monoatomic solid Se, EPL, 81,56002.

Ono, M., Sueyoshi, M., Okayasu, S., Esaka, F., Osawa, T.,Iguchi, Y., Mashimo, T., 2009, Development of special rotorfor centrifugal seperation of isotopes in solid pure metals,Rev. Sci. Instrum. 80, 8, 083908.

Wierzba, B., 2012, Entropy production in Cu–Fe–Ni alloys -The bi-velocity method, Physica A, 391, 56–61.

Wierzba, B., 2017, The vacancies formation and agglomerationunder centrifugal force, Physica A, 484, 482-487.

Wierzba, B., Mashimo, T., Danielewski, M., 2018, Competitionbetween chemical and gravi-ty forces in binary alloys,High Temp. Mater. Proc., 37, 285-288.

Wierzba, B., Nowak, W.J., 2018, The Changes in the morphologyof Bi-Sb system under centrifugal force at room temperature,Materials, 11, 1065-1071.