A case study on tundish fluid flow with electromagnetic stirring

A case study on tundish fluid flow with electromagnetic stirring

Monika Zielińska1,2, Hongliang Yang3, Łukasz Madej2, Łukasz Malinowski1

1Corporate Technology Center CTC, ABB sp. z o.o., Zeganska 1 st., 04-713 Warsaw, Poland.

2AGH University of Krakow, Department of Applied Computer Science and Modelling, Mickiewicza 30 av., 30-059 Krakow, Poland.

3ABB AB/Metallurgy, Terminalvagen 24, Bldg 340, Vasteras 72159, Sweden.

DOI:

https://doi.org/10.7494/cmms.2024.1.0831

Abstract:

Tundish is a crucial component just before casting and plays a pivotal role in enhancing the cleanliness and overall homogeneity of the final steel composition. The paper deals with the development of an advanced Computational Fluid Dynamics (CFD) model, specifically focusing on the molten steel flow within the tundish to numerically support its further improvements. A noteworthy addition to the model is the consideration of an electromagnetic stirring device. This device significantly influences steel cleanliness and composition, thereby affecting the final properties of the formed metallic parts in subsequent processing stages. The current investigation presents a comprehensive analysis of flow patterns and stirring energy distributions in relation to active and dead zones within the tundish. Through the developed coupled electromagnetic/fluid dynamic model, the paper demonstrates the feasibility of optimizing mixing processes to control the properties of the final product.

Cite as:

Zielińska, M., Yang, H., Madej, Ł., Malinowski, Ł. (2024). A case study on tundish fluid flow with electromagnetic stirring. Computer Methods in Materials Science, 24(1), 51-60. https://doi.org/10.7494/cmms.2024.1.0831

Article (PDF):

Keywords:

Computational Fluid Dynamics, Tundish fluid flow, Electromagnetic stirring

References:

Cendekia B. B. (2018). The Effect of Electromagnetic Stirring and Flow Control Devices on Flow Characteristics in Eight-strand Tundish [Master’s thesis, KTH Royal Institute of Technology, School of Industrial Engineering and Management]. https://kth.diva-portal.org/smash/get/diva2:1229627/FULLTEXT01.pdf.

Chang, S., Cao, X., Zou, Z., Isac, M., & Guthrie, R. I. L. (2018). Micro-bubble formation under non-wetting conditions in a full-scale water model of a ladle shroud/tundish system. ISIJ International, 58(1), 60–67. https://doi.org/10.2355/isijinternational.ISIJINT-2017-390.

Lei, H., Yang, B., Bi, Q., Xiao, Y., Chen, S., & Ding, Ch. (2019). Numerical simulation of collision-coalescence and removal of inclusion in tundish with channel type induction heating. ISIJ International, 59(10), 1811–1819. https://doi.org/10.2355/isijinternational.ISIJINT-2019-118.

Li, B., Lu, H., Zhong, Y., Rens, Z., & Lei, Z. (2020). Numerical simulation for the influence of EMS position on fluid flow and inclusion removal in a slab continuous casting mold. ISIJ International, 60(6), 1204–1212. https://doi.org/10.2355/isijinternational.ISIJINT-2019-666.

Reis, B. H., Bielefeldt, W. V., & Vilela, A. C. F. (2014). Efficiency of inclusion absorption by slags during secondary refining of steel. ISIJ International, 54(7), 1584–1591. https://doi.org/10.2355/isijinternational.54.1584.

Sahai, Y., & Emi, T. (1996). Melt flow characterisation in continuous casting tundishes. ISIJ International, 36(6), 667–672. https://doi.org/10.2355/isijinternational.36.667.

Sahai, Y., & Emi, T. (2008). Tundish Technology for Clean Steel Production. World Scientific Publishing. https://doi.org/10.1142/6426.

Souza, G. M., Mendonça, A. F. G., & Tavares, R. P. (2020). Physical and mathematical modeling of inclusion behavior in a tundish with gas curtain. REM – International Engineering Journal, 73(4), 531–538. https://doi.org/10.1590/0370-44672020730010.

Yang, H., Vanka, S. P., & Thomas, B. G. (2019). Mathematical modeling of multiphase flow in steel continuous casting. ISIJ International, 59(6), 956–972. https://doi.org/10.2355/isijinternational.ISIJINT-2018-743.

Zhang, L., & Thomas, B. G. (2003). Inclusions in continuous casting of steel. XXIV National Steelmaking Symposium, Morelia, Mich, Mexico, 26–28 Nov. 2003 (pp. 138–183). https://www.researchgate.net/publication/228857732_Inclusions_in_continuous_casting_of_steel.

Zhang, L., Taniguchi, S., & Cai, K. (2000). Fluid flow and inclusion removal in continuous casting tundish. Metallurgical and Materials Transactions B, 31(2), 253–266. https://doi.org/10.1007/s11663-000-0044-9.

Zielińska, M., Yang, H., Madej, Ł., & Malinowski, Ł. (2023). Influence of electromagnetic field on stirring energy in selected metallurgical equipment. Steel Research International, 95(3), 2300534. https://doi.org/10.1002/srin.202300534.