Development of the material database for the VirtRoll computer system dedicated to design of an optimal hot strip rolling technology

Development of the material database for the VirtRoll computer system dedicated to design of an optimal hot strip rolling technology

Krzysztof Bzowski5, Jacek Kitowski1,5, Roman Kuziak2, Pello Uranga3, Isabel Gutierrez3, Ronan Jacolot4, Łukasz Rauch5, Maciej Pietrzyk5

1ACC Cyfronet AGH, AGH University of Science and Technology, Krakow, Poland.

2Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland..

3CEIT Paseo de Manuel Lardizabal 15, 20018 Donostia-San Sebastián, Spain.

4ArcelorMittal Maizières Research SA, Voie Romaine, 57280 Maizières-lès-Metz, France.

5AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.

DOI:

https://doi.org/10.7494/cmms.2017.4.0605

Abstract:

The paper describes the material database, which was developed and included in the VirtRoll computer system dedicated to the design of optimal hot strip rolling technologies. The structure and functionalities of the database are described in the first part of the paper. The integration between the database and the system through the Scalarm platform is described next. Following chapters are dedicated to generation of material data, which are included in the database. These data are coefficients in material models, which include flow stress models, microstructure evolution models, phase transformation models and mechanical properties models. Several models of various complexity and various predictive capabilities were chosen for each mentioned phenomenon. All are mean field models to allow fast simulation of the whole manufacturing chain. Modern steel grades were selected as the case studies. Experimental tests performed to generate the data composed plastometric tests, stress relaxation tests and dilatometric tests. Inverse analysis was applied to determine the coefficients in the model. Discussion of results focused on validation and on new aspects of models recapitulates the paper.

Cite as:

Bzowski, K., Kitowski, J., Kuziak, R., Uranga, P., Gutierrez, I., Jacolot, R., Rauch, Ł., Pietrzyk, M. (2017). Development of the material database for the VirtRoll computer system dedicated to design of an optimal hot strip rolling technology. Computer Methods in Materials Science, 17(4), 225 – 246. https://doi.org/10.7494/cmms.2017.4.0605

Article (PDF):

Keywords:

Hot strip rolling, Material data base, Material models, Identification

References:

Abad, R., Fernández, A.I., López, B., Rodriguez-Ibabe, J.M.,2001, Interaction between recrystallization and precipitationduring multipass rolling in a low carbon niobium microalloyedsteel, ISIJ International, 41, 1373-1382.

Andorfer, J., Auzinger, D., Hirsch, M., Hubmer, G., Pichler, R.,1998, VAI-Q strip – an online system for controlling themechanical properties of hot rolled strip, Proc. IFACWorkshop on Automation in Mining, Mineral and MetalProcessing, Cologne, 325-330.

Beynon, J.H., Sellars, C.M., 1992, Modelling microstructure andits effects during multipass hot rolling, ISIJ International,32, 359-367.

Bhadeshia, H.K.D.H., 1980, The lower bainite transformation andthe significance of carbide precipitation, Acta Metallurgica,28, 1103-1114.

Davenport, S.B., Silk, N.J., Sparks, C.N., Sellars, C.M., 1999,Development of constitutive equations for the modellingof hot rolling, Materials Science and Technology, 16, 1-8.

Donnay, B., Herman, J.C., Leroy, V., Lotter, U., Grossterlinden,R., Pircher, H., 1996, Microstructure evolution of C-Mnsteels in the hot deformation process: the STRIPCAMmodel, Proc. Conf. Modelling of Metal Rolling Processes,eds, Beynon, J.H., Ingham, P., Teichert, H., Waterson K.,London, 23-35.

Gavrus, A., Massoni, E., Chenot, J.L., 1996, An inverse analysisusing a finite element model for identification of rheologicalparameters, Journal of Materials Processing Technology,60, 447-454.

Hensel, A., Spittel, T., 1979, Kraft- und Arbeitsbedarf BildsamerFormgebungs-verfahren, VEB Deutscher Verlag furGrundstoffindustrie, Leipzig.Hodgson, P.D., Gibbs, R.K., 1992, A mathematical model topredict the mechanical properties of hot rolled C-Mn andmicroalloyed steels, ISIJ International, 32, 1329-1338.

Elwazri, A.M., Essadiqi, E., Yue, S., 2004, Kinetics of metadynamicrecrystallization in microalloyed hypereutectoidsteels, ISIJ International, 44, 744-752.

Ibrahim, M., Shulkosky, R., 2007, Simulation and developmentof Advanced High Strength Steels on a hot strip millusing a microstructure evolution model, HSMM Applicationfor AHSS, 1 , 1-12.

Iza-Mendia, A., Gutiérrez, I., 2013, Generalization of the existingrelations between microstructure and yield stress from ferrite–pearlite to high strength steels, Materials Science EngineeringA, 561, 40-51.

Katsamas, A.I., Haidemenopoulos, G.N., 2008, A semi–empiricalmodel for the evolution of retained austenite via bainitictransformation in multiphase TRIP steels, Steel ResearchInternational, 79, 875-884.

Kowalski, B., Sellars, C.M., Pietrzyk, M., 2000, Development of acomputer code for the interpretation of results of hot planestrain compression tests, ISIJ International, 40, 1230-1236.

Król, D., Słota, R., Rauch, Ł., Kitowski, J., Pietrzyk, M., 2014,Harnessing heterogeneous computational infrastructuresfor studying metallurgical rolling processes, in: eChallenges,eds, Cunningham, P., Cunningham, M., InternationalInformation Management Corporation, Belfast, 1-9.

Kubin, L.P., Mortensen, A., 2003, Geometrically necessary dislocationsand strain-gradient plasticity: a few critical issues,Scripta Materialia, 48, 119-125.

Kuziak, R., Pietrzyk, M., 2011,Physical and numerical simulationof the manufacturing chain for the DP steel strips, SteelResearch International, special edition conf. ICTP, Aachen,756-761.

Leblond, J.B., Devaux, J., 1984, A new kinetic model for anisothermalmetallurgical transformations in steel includingeffect of austenite grain size, Acta Metallurgica, 32, 137-146.

Lenard, J.G., Pietrzyk, M., Cser, L., 1999, Mathematical andphysical simulation of the properties of hot rolled products,Elsevier, Amsterdam.Löffler, H., Döll, R., Poppe, T., Sörgel, G., Holtheuer, U., Zouhar,G., 2001, Control of mechanical properties by monitoringmicrostructure, AISE Steel Technology, 1, 44-47.

Lotter, U., Schmitz, H.-P., Zhang, L., 2004, Structure of the metallurgicallyoriented modelling system TK-StripCam forsimulation of hot strip manufacture and application in researchand production practice, Journal de Physique IVFrance, 120, 801-808.

McQueen, H.J., 1993, Controversies in the theory of dynamicrecrystallization, Materials Science Forum, 113-115, 429-434.

Milenin, I., Pernach, M., Pietrzyk, M., 2015, Application of thecontrol theory for modelling austenite-ferrite phase transformationin steels, Computer Methods in Materials Science,15, 327-335.

Nanba, S., Kitamura, M., Shimada, M., Katsumata, M., Inoue, T.,Imamura, H., Maeda, Y., Hattori, S., 1992, Prediction ofmicrostructure distribution in the through-thickness directionduring and after hot rolling in carbon steels, ISIJ International,32, 377-386.

Novillo, E., Cotrina, E., Iza-Mendia, A., López, B. Gutiérrez, I.,2005, Factors limiting the achievable ferrite grain refinementin hot worked microalloyed steels, Materials ScienceForum, 500-501, 355-362.

Pietrzyk, M., 1990, Finite element based model of structure developmentin the hot rolling process, Steel Research, 61,603-607.

Pietrzyk, M., 2000, Finite element simulation of large plasticdeformation, Journal of Materials Processing Technology,106, 223-229.

Pietrzyk, M., 2002, Through-process modelling of microstructureevolution in hot forming of steels, Journal of MaterialsProcessing Technology, 125-126, 53-62.

Pietrzyk, M., Kuziak, R., 2012, Modelling phase transformationsin steel, in: Microstructure evolution in metal formingprocesses, eds, Lin, J., Balint, D., Pietrzyk, M., WoodheadPublishing, Oxford, 145-179.

Pietrzyk, M., Madej, Ł., Rauch, Ł., Szeliga, D., 2015, ComputationalMaterials Engineering: Achieving high accuracyand efficiency in metals processing simulations, Elsevier,Amsterdam.

Pietrzyk, M., Kania, Z., Kuziak, R., Rauch, Ł., Kusiak, J., 2016, Asimple model for prediction of retained austenite in steelrods after hot rolling and controlled cooling, Proc. XXXVVerformungskundliches Kolloquium, ed., Buchmayr, B.,Zauchensee, 56-66.

Pietrzyk, M., Kuziak, R., Pidvysots’kyy, V., Kusiak, J., 2017,Applications of plane strain compression tests for identificationof material models and for physical simulation ofthermomechanical processing of bainitic steel, Proc.XXXVI Verformungskundliches Kolloquium, ed., Buchmayr,B., Zauchensee, 23-30.

Rauch, Ł., Bzowski, K., Kuziak, R., Kitowski, J., Pietrzyk, M.,2016, The off-line computer system for design of the hotrolling and laminar cooling technology for steel strips,Journal of Machine Engineering, 16, 27-43.

Sah, J.P., Sellars, C. M., Effect of deformation history on staticrecrystallization and restoration in ferritic stainless steels,1979, Proc. Conf. on Working and Forming Processes,Metals Society, London, 62-66.

Sellars, C.M., McTegart, W.J., 1966, La relation entre la resistanceet la structure dans deformation a chaud, Mémoireset Etudes Scientifiques de la Revue de Metallurgie,63, 731-740.

Sellars, C.M., 1979, Physical metallurgy of hot working, in: HotWorking and Forming Processes, eds, Sellars, C.M., Davies,G.J., The Metals Soc., London, 3-15.

Smith, A., Miroux, A., Sietsma, J., van der Zwaag, S., 2006, Aphysical analysis of the stress relaxation kinetics of deformedaustenite in C-Mn steel, Steel Research International,77, 595-602.

Szeliga, D., Gawąd, J., Pietrzyk, M., 2006, Inverse analysis foridentification of rheological and friction models in metalforming, Computer Methods in Applied Mechanics andEngineering, 195, 6778-6798.

Szeliga, D., Pietrzyk, M., 2007, Testing of the inverse software foridentification of rheological models of materials subjectedto plastic deformation, Archives of Civil and MechanicalEngineering, 7, 35-52.

Trowsdale, A.J., Randerson, K., Morris, P.F., Husain, Z.,Crowther, D.N., 2001, MetModel: microstructural evolutionmodel for hot rolling and prediction of final productproperties, Ironmaking and Steelmaking, 28, 170-174.

Uranga, P., Fernandez, A.I., López, B., Rodriguez-Ibabe, J.M.,2004, Modeling of austenite grain size distribution in Nbmicroalloyed steels processed by thin slab casting and directrolling (TSDR) route, ISIJ International, 44, 1416-1425.

Zahiri, S.H., Hodgson, P.D., 2004, The static, dynamic andmetadynamic recrystallisation of a medium carbon steel,Materials Science and Technology, 20, 458-46.

Zurob, H.S., Hutchinson, C.R., Bréchet, Y., Purdy, G.R., 2004,Rationalization of the softening and recrystallization behaviourof microalloyed austenite using mechanism maps,Materials Science and Engineering, A 382, 64-81.