DEVELOPMENT OF THE MATERIAL DATABASE FOR THE VIRTROLL COMPUTER SYSTEM DEDICATED TO DESIGN OF AN OPTIMAL HOT STRIP ROLLING TECHNOLOGY

KRZYSZTOF BZOWSKI\(^5\), JACEK KITOWSKI\(^1,5\), ROMAN KUZIAK\(^2\), PELLO URANGA\(^3\), ISABEL GUTIERREZ\(^3\), RONAN JACOLOT\(^4\), ŁUKASZ RAUCH\(^5\)*, MACIEJ PIETRZYK\(^5\)

\(^1\)ACC Cyfronet AGH, AGH University of Science and Technology, Krakow, Poland.
\(^2\)Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland.
\(^3\)CEIT Paseo de Manuel Lardizabal 15, 20018 Donostia-San Sebastian, Spain
\(^4\)ArcelorMittal Maizières Research SA, Voie Romaine, 57280 Maizières-lès-Metz, France
\(^5\)AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

*Corresponding author: krauch@agh.edu.pl

Abstract

The paper describes the material database, which was developed and included in the VirtRoll computer system dedicated to the design of optimal hot strip rolling technologies. The structure and functionalities of the database are described in the first part of the paper. The integration between the database and the system through the Scalarm platform is described next. Following chapters are dedicated to generation of material data, which are included in the database. These data are coefficients in material models, which include flow stress models, microstructure evolution models, phase transformation models and mechanical properties models. Several models of various complexity and various predictive capabilities were chosen for each mentioned phenomenon. All are mean field models to allow fast simulation of the whole manufacturing chain. Modern multiphase steels grades were selected as the case studies. Experimental tests performed to generate the data composed plastometric tests, stress relaxation tests and dilatometric tests. Inverse analysis was applied to determine the coefficients in the model. Discussion of results focused on validation and on new aspects of models recapitulates the paper.

Key words: Hot strip rolling, Material data base, Material models, Identification

1. INTRODUCTION

Studying rolling-related processes, by building a virtual hot rolling mill, can be described as a multi-step workflow involving:
- design of a virtual hot rolling mill,
- simulation of the rolling process with the parameter study approach,
- output data exploration with sensitivity analysis methods to discover relationships between the hot rolling mill parameters and the obtained thermo-mechanical properties in final product.

Each of these steps has different requirements regarding easiness of use, computing power and progress monitoring. Designing and developing of a system supporting this multi-step workflow was the main objective of the whole project.

Problem of the computer aided design of the hot strip rolling technology has been in the field of interest of researchers for more than half of the century. The first fundamental works in this field were focused on development of Thermo-Mechanically Controlled Process (TMCP), which required the development of both metallurgical (Sah & Sellars, 1979; Nanba et al., 1992; Novillo et al., 2005) and
numerical models (Beynon & Sellars, 1992; Hodgson & Gibbs, 1992; Zurob et al., 2005). Following development of the computing power microstructure evolution models were implemented in the finite element (FE) codes and fully coupled thermal-mechanical-metallurgical simulations became possible (Pietrzyk, 1990). In late 1990-ties and at the beginning of this century several through process models describing the whole manufacturing process were developed (Donnay et al., 1996; Pietrzyk, 2002; Uranga, 2004).

The first models developed half of the century ago had serious limitations when applied under conditions different from those for which they were developed (short interpass times, privilege recovery over recrystallization). Current models became more reliable and accurate. The steel industry nowadays needs developing AHSS (Advanced High Strength Steel) grades in a cost-effective way and get them to market as fast as they can while manufacturing them within the constraints of their mill configuration. This needs progress in terms of modelling to be performed, allowing for example effective modelling of new tendencies as eg. the low coiling temperatures required for hot rolled Dual Phase steel. The mentioned models limitations justified creation of a computer system dedicated to flexible design and modelling of hot rolling technology. Some such systems based on hot rolling metallurgical models have been developed and used for defining thermo-mechanical cycles or monitoring the mechanical properties. Worldwide experiences are reported in the literature (Löfler et al., 2001; Lotter et al., 2004; Andorfer et al., 1998). Software packages such as TK-StripCam by ThyssenKrupp Stahl (Lotter et al., 2004), MetModel by Corus (Trowsdale et al., 2001), MicroStructureMonitor by Siemens (Löffler et al., 2001), VAI-Q strip (Andorfer et al., 1998) by Voestalpine and Industrieanlagenbau (VAI) and HSMM (Ibrahim & Shulkosky, 2007) by the INTEG process group are available. The system Slimmer distinguishes this system from the existing ones. It allows design of rolling line composed of basic equipment like furnace, de-scalers, rolling stands, laminar cooling, coilers, etc. Dependent on selected materials specific numerical models can be loaded by the system. The main loading procedure is based on the workflow idea and supported by software framework for workflow design, creation and performance. This approach was integrated with the steel modelling workbench, which is an open software environment, where various models can be linked and run to allow the modular development of integrated models of various stages of the manufacturing. The integration was based on the common data flow model. An overview of the system along with main steps of the workflow is depicted in figure 1. Numerical simulations of different hot rolling aspects are an essential part of studying rolling-related processes.

As it has been mentioned, combination of models with the data and knowledge bases and with the inverse approach to design of optimal processes is the main advantage of the VirtRoll system, which distinguishes this system from the existing ones. Development of the database and application of the inverse analysis to identification of various material models was the main objective of this paper.

2. DATABASE

The work was started with the analysis of the software architecture, which was used as a fundamental element of the VirtRoll system dedicated to flexible material modelling, large scale computations, sensitivity analysis and optimization. All the analysed aspects of the architecture influence final
design and implementation of the database including: authorization and authentication, process design and parameters selection, materials management, computing jobs performance, monitoring and many others. This also includes storing of common data used by all subsystems, which are crucial for using modern e-infrastructures.

2.1. Methodology

The technology involved in the paper concerns three main elements: the VirtRoll system development, the integration between the system and the Scalarm platform (Król et al., 2014) as well as numerical simulations of rolling-related processes.

VirtRoll is composed of two parts (Rauch et al., 2016) i.e. a web-based module allowing design of rolling mill and computing module dedicated to numerical simulations of designed manufacturing cycle. Information about materials and devices available for hot rolling mill designers is stored in the database, being the aim of this paper. The idea was to design the database to be as flexible as possible, therefore, MongoDB was used in the first implementation. The selection of database management system MongoDB was justified mainly by its capability of object oriented design and implementation convergent with model layer in application. This choice was dictated by the compatibility of the database with the server side of the system and the maintenance of flexible data modelling of the process, i.e. support for new materials and devices, characterized by different parameters. The schematic illustration of the structure of the database is shown in figure 2. The component dedicated to Designs contains the following collections of:

- designs, which remain in relation many-to-one with the collection of projects, containing various information on different design within the same project,
- elements of the project including devices, optimization and sensitivity analysis, which are related to the specific design,
- information on calculations, which are connected with the experiments performed in Scalarm system – these collections are related to single simulations, optimization and sensitivity analysis.

The component holding collections for User data includes credentials for both systems i.e. VirtRoll and Scalarm. It is crucial to hold this information from the point of view of the numerical simulations, which in form of experiments are submitted to the HPC infrastructures. Each of such infrastructures requires further authentication and authorization what is supported by the designed database. The rest of the database stores information on materials and models including chemical composition of the material, as well as all the parameters of material models. Due to such solution it is possible to access these parameters through the Graphical User Interface (GUI) to make them available for computational module.

2.2. Materials

In the present project the material data for four groups of steels were introduced into the database. Few heats were prepared in each group, distinguished by the additions of Nb, Ti and Mo:

- HSLA steels with 0.035%Nb (S401, S408), 0.035%Nb + 0.2%Mn (S403) and 0.035%Nb + 0.09%Ti + 0.2%Mn (S404).
- Bainitic steels with 0.12%Ti + 0.2%Mn (S405), 0.18%Ti + 0.2%Mn (S406) and 0.03%Nb + 0.18%Ti + 0.2%Mn (S407).
- Dual Phase (DP) steels with 0.034%Nb + 0.001%Ti + 0.02%Mn (S447), 0.036% Nb (S448) and 0.037%Nb + 0.002%Ti + 0.03%Mn (S448).
- Advanced High Strength Steels with 0.035%Nb (AHSS-9), 0.035%Nb + 0.2%Mn (AHSS-10), 0.13%Ti (AHSS-11) and 0.13%Ti + 0.2%Mn (AHSS-12).
3. MODELS

Rolling models implemented into the VirtRoll system are presented in (Rauch et al., 2016) and they are not discussed here. The objective of this part is presentation of material models, which were implemented into the database. Procedure of the identification of all models on the basis of experiments is described, as well. The models were divided into four groups:

- Flow stress models
- Microstructure evolution models
- Phase transformation models
- Models describing mechanical properties of products.

Since the VirtRoll system is dedicated to the industrial applications, selection of the models was made using the computing costs as the main criterion. Authors have developed models of various complexity and various predictive capabilities ranging from closed form equations to advanced multiscale models based on discrete methods. Problems of the balance between the predictive capabilities and computing costs of various models is discussed in (Pietrzyk et al., 2015). In the following Sections simple models with reasonably good predictive capabilities are presented.

3.1. Flow stress

Five models of various complexity and various predictive capabilities were implemented in the VirtRoll system. The simplest is a typical equation accounting for the influence of temperature, strain and strain rate:

$$\sigma_p = A \varepsilon^n \dot{\varepsilon}^m \exp\left(\frac{Q_{def}}{RT}\right)$$

(1)
where: \(\sigma_p \) – flow stress, \(\dot{\varepsilon} \) – strain rate, \(\varepsilon \) – strain, \(Q_{\text{def}} \) – activation energy of deformation, \(T \) – temperature in K, \(R \) – universal gas constant.

Equation (1) does not account for softening due to dynamic recrystallization. Thus, Hensel-Spittel equation (Hensel & Spittel, 1979) was used to overcome this disadvantage:

\[
\sigma_p = A\varepsilon^n \exp\left(q\varepsilon\right) \dot{\varepsilon}\exp\left(-\beta T_c\right)
\]

where: \(T_c \) – temperature in °C.

Three more advanced models with a capability to describe properly the peak stress as well as stress saturation for larger strains were additionally included into the database:
- Model proposed by Gavrus et al. (1996):

\[
\sigma_p = \sigma_0 + \left(\sigma_{ss(e)} - \sigma_0\right) \left[1 - \exp\left(-\frac{\varepsilon}{\varepsilon_c}\right)\right] - C
\]

where:

\[
C = \begin{cases}
0 & \varepsilon \leq \varepsilon_c \\
\left(\sigma_{ss(e)} - \sigma_0\right) & \varepsilon > \varepsilon_c
\end{cases}
\]

- Sellars-Teggart (S-T) model (Sellars & McTegart, 1966) described also in (Davenport et al., 1999; Kowalski et al., 2000):

\[
\sigma_p = \sigma_0 + \left(\sigma_{ss(e)} - \sigma_0\right) \left[1 - \exp\left(-\frac{\varepsilon}{\varepsilon_c}\right)\right]^2 - C
\]

where:

\[
\varepsilon_c = \frac{1}{\alpha_0}\sinh^{-1}\left(\frac{Z}{A_0}\right)^{\frac{1}{n_x}}
\]

\[
\sigma_{ss(e)} = \frac{1}{\alpha_{ss(e)}}\sinh^{-1}\left(\frac{Z}{A_{ss(e)}}\right)^{\frac{1}{n_x}}
\]

\[
\varepsilon_c = \frac{1}{3.25} \left[q_1 + q_2 \left(\sigma_{ss(e)}\right)^2\right]
\]

\[
\varepsilon_{ss} - \varepsilon_c = \frac{\varepsilon_{ss} - \varepsilon}{1.98}
\]

\[
\varepsilon_c = C_2 \left(\frac{Z}{\sigma_{ss(e)}}\right)^{N_x}
\]

where: \(\varepsilon_c \) – critical strain for dynamic recrystallization, \(Z \) – Zener-Hollomon parameter calculated as:

\[
Z = \dot{\varepsilon} \exp\left(\frac{Q_{\text{def}}}{RT}\right)
\]

with \(Q_{\text{def}} \) – activation energy of deformation.

- Model developed in CEIT, which is an adaptation of the S-T model extended to account for the austenite grain size and for the effect of microalloying elements:

\[
\sigma_p = \sigma_0 + \sigma_{ss(e)} \left[1 - \exp(-\beta\varepsilon)\right]^{0.5} - C\sigma_{ss}
\]

where:

\[
\beta = a_\beta - b_\beta \log\left(Z\right)
\]

\[
C = \begin{cases}
0 & \varepsilon \leq \varepsilon_c \\
0.15X_{\text{DRX}} & \varepsilon > \varepsilon_c
\end{cases}
\]

\[
\varepsilon_c = C_1 \left[1 + 20\left([\text{Nb}] + 0.02[\text{Ti}] + \Delta\right)\right]D_b^{0.1}Z^{N_1}
\]

\[
\varepsilon_x = \varepsilon_c + C_2 \left[1 + 20\left([\text{Nb}] + 0.02[\text{Ti}] + \Delta\right)\right]D_b^{0.1}Z^{N_2}
\]

\[
X_{\text{DRX}}\quad \text{above is the dynamically recrystallized volume fraction defined in Section 3.2. Coefficient } \Delta \text{ is equal to 0.035 for Nb and Ti+Mo steels S403 and S404 and is equal zero for the remaining steels. Symbols } \varepsilon_c, \sigma_{ss(e)} \text{ are defined under equation (4).}
\]

3.2. Microstructure evolution

Conventional equations describing microstructure evolution during hot rolling as well as ferrite grain size were used as the default models in the VirtRoll database. The review of these models as well as coefficients for various conventional steels can be found in (Lenard et al., 1999).

Certain minimum threshold of strain is needed to initiate the static recrystallization. This threshold is usually assumed \(\varepsilon_{\text{SRX}} = 0.03 \). General JMAK (Johnson-Mehl-Avrami-Kolmogorov) equation for kinetics of static recrystallization has a form:

\[
X = 1 - \exp\left[-a\left(\frac{t}{t_b}\right)^n\right]
\]
where: \(n \) – Avrami exponent, \(a \) – coefficient.

Value of the coefficient \(a \) depends on the time \(t_b \), which is a basic time in equation (7). It can be shown that:

\[
a = \ln(1-b)
\]

(8)

In equation (8) \(b \) is a recrystallized volume fraction for the basic time in equation (7). If, as suggested by Sellars (1979), time for 50% recrystallization \(t_{0.50} \) is used as a basic time, then \(b = 0.5 \) and \(a = 0.693 \) and equation (7) applied to describe kinetics of the static recrystallization becomes:

\[
X_{SRX} = 1 - \exp\left[-0.693\left(\frac{t}{t_{0.50}}\right)^n\right]
\]

(9)

Time for 50% recrystallization in equation (9) is a function of process parameters:

\[
t_{0.50} = A\varepsilon_i^{-a_1} \dot{\varepsilon}_i^{-a_2} D_0^{a_3} \exp\left(\frac{Q_{SRX}}{RT}\right)
\]

(10)

where: \(\varepsilon \) – effective strain, \(\dot{\varepsilon} \) – effective strain rate, \(D_0 \) – grain size prior to deformation, \(T \) – temperature in K.

For microalloyed steels S401, S402 and S403 time for 50% recrystallization in equation (9) is given by the following equation:

\[
t_{0.50} = A\varepsilon_i^{-a_1} \dot{\varepsilon}_i^{-a_2} D_0^{a_3} \exp\left(\frac{Q_{SRX}}{RT}\right)
\]

\[
\exp\left[\left(\frac{275000}{T} - 185\right)\left([\text{Nb}]_{\text{eff}} + 0.374][\text{Ti}]\right)\right]
\]

(11)

where: \(\varepsilon \) – effective strain, \(\dot{\varepsilon} \) – effective strain rate, \(D_0 \) – grain size prior to deformation, \(T \) – temperature in K.

The grain size after static recrystallization is calculated from the equation:

\[
D_{SRX} = B\varepsilon^{-h} \dot{\varepsilon}^{-h} D_0^{h} \exp\left(\frac{-Q_{DSRX}}{RT}\right)
\]

(12)

The total time of recrystallization is calculated assuming that recrystallization is completed when recrystallized volume fraction reaches 0.95. Thus, when \(t_{0.50} \) is used as basic time, the total time of recrystallization is:

\[
t_{SRX} = t_{0.95} = \left[\frac{\ln(0.05)}{\ln(0.5)}\right]^{\frac{1}{n}} t_{0.50} = 4.3219^n t_{0.50}
\]

(13)

When the total time for recrystallization is shorter than the interpass time \(t_i \) (\(t_{SRX} < t_i \)), the grain growth is simulated during the remaining time \(t = t_i - t_{SRX} \). The following equation is used:

\[
D_i = D_0 + K t \exp\left(-\frac{Q_{GROWTH}}{RT}\right)
\]

(14)

where: \(D_0 \) – grain size at the beginning of growth, \(D_i \) – grain size after the time \(t \).

When recrystallization is not completed before the next pass \((t_{SRX} > t_i) \), partial recrystallization is simulated. The grain size at the entry to the next pass is calculated as a weighted average of the initial grain size \(D_0 \) and recrystallized grain size \(D_{SRX} \), according to the formula:

\[
D_i = D_{SRX} X_{SRX} + D_0 (1 - X_{SRX})
\]

(15)

When partial recrystallization takes place, some retained strain remains in the material. This strain is calculated as:

\[
\varepsilon_{\text{ret}} = W \varepsilon_i (1 - X_{SRX})
\]

(16)

where: \(\varepsilon_{\text{ret}} \) – retained strain at the exit to the next pass, \(\varepsilon_i \) – effective strain in the previous pass, \(W \) – coefficient, which is usually taken as 1, but some of researchers use this coefficient to account for the influence of the recovery (Hodgson & Gibbs, 1992) and then \(W < 1 \).

Microstructure evolution model for static recrystallization contains several coefficients, which are identified on the basis of experimental tests. As it has been mentioned, stress relaxation were used for that purpose in the present work. The coefficients in kinetics and grain size equation obtained for selected steels are given in Section 5.2.

Dynamic recrystallization is the phenomenon, which involves controversies. The general understanding of the distinction between static and dynamic recrystallization is that the latter occurs during deformation and the former after the deformation, but the mechanism is in general the same. Interesting discussion of controversies connected with the dynamic recrystallization can be found in (McQueen, 1993) and thorough analysis of the phenomena occurring during dynamic recrystallization as well as modelling aspects are presented in (Zahiri & Hodgson, 2004). There is a general opinion that
when strain in a pass exceeds certain critical value the dynamic recrystallization begins during the deformation. This critical strain is defined under equation (4). Accounting for the austenite grain size leads to the following equation:

\[\varepsilon_{cr,DRX} = p_1 D_0^{p_2} Z^{p_3} \]

(17)

Recrystallized volume fraction in dynamic recrystallization is a function of strain and is calculated as:

\[X_{DRX} = 1 - \exp \left[-p_1 \left(\frac{\varepsilon - \varepsilon_{cr,DRX}}{\varepsilon_s - \varepsilon_{cr,DRX}} \right)^{p_3} \right] \]

(18)

where: \(\varepsilon_s \) – saturation strain given by:

\[\varepsilon_s = p_4 D_0^{p_2} Z^{p_3} \]

(19)

In the present project for the HSLA steels (S401, S403 and S404) the following relation of the saturation strain on micro alloying elements was proposed:

\[\varepsilon_s = 5 \times 10^{-4} + 20 \left[(0.01 \text{Nb}) + 0.02 (0.035 \text{Ti}) + 0.035 \Delta \right] D_0 Z + \varepsilon_s \]

(20)

Dynamically recrystallized volume fraction at the end of deformation is determined next. Strain in a pass \(\varepsilon_i \) is substituted for \(\varepsilon \) in equation (18) and the final volume fraction \(X_{DRX}(\varepsilon_i) \) is calculated. It is again assumed that recrystallization is completed if the recrystallized volume fraction exceeds 0.95. If \(X_{DRX}(\varepsilon_i) < 0.95 \), the static recrystallization takes place in the remaining volume fraction \((1 - X_{DRX}(\varepsilon_i)) \).

Dynamically recrystallized material is subjected to metadynamic recrystallization with the kinetics calculated from the equation:

\[X_{MDRX} = 1 - \exp \left[-0.693 \left(\frac{t}{t_{0.5}} \right)^{\eta} \right] \]

(21)

where the time for 50% of the metadynamic recrystallization for the HSLA steels is (Elwazri, 2005):

\[t_{0.5}^{MDRX} = q_5 Z^{-\eta_1} \exp \left(\frac{Q_{MDRX}}{RT} \right) \]

(22)

And for the remaining steels in this work:

\[t_{0.5}^{MDRX} = q_6 Z^{-\eta_1} \exp \left(\frac{Q_{MDRX}}{RT} \right) \]

(23)

The grain size after the dynamic recrystallization does not depend on the strain and is the function of the Zener-Hollomon parameter \(Z \) only:

\[D_{DRX} = p_5 Z^{p_4} \]

(24)

Similar equation with different coefficients was proposed for the metadynamic recrystallization:

\[D_{MDRX} = q_5 Z^{-\eta_1} \]

(25)

Coefficients in equations describing the dynamic recrystallization and the metadynamic recrystallization are given in Section 5.2. When metadynamic recrystallization occurs, the grain size after completing the recrystallization is calculated as a weighted average of the grain size after dynamic recrystallization \(D_{DRX} \) and after the metadynamic recrystallization \(D_{MDRX} \) according to the formula:

\[D_1 = D_{DRX} X_{DRX} + D_{MDRX} (1 - X_{DRX}) \]

(26)

When the dynamic or metadynamic recrystallization is completed, the grain growth is simulated in the remaining time. The grain growth equation (14) is used.

Models of transformations during cooling are described in the next Section. Ferrite grain size, which is used to determine mechanical properties of product, is calculated from the simplified model. Equation proposed by Hodgson and Gibbs (1992) accounting for the cooling rate and the austenite grain size was used as basic ferrite grain size model:

\[D_a = (f_0 + f_1 C_{eq}) + (f_2 + f_3 C_{eq}) C_{eq} + f_4 [1 - \exp(-f_5 D_{a})] \]

(27)

where: \(C_{eq} \) – carbon equivalent calculated as \([C] + [Mn]/6\), \(C_r \) – cooling rate calculated as an average during ferrite transformation, \(D_r \) – austenite grain size at the beginning of the phase transformation.

Accounting for the austenite deformation at the beginning of the phase transformations is crucial for the accuracy of simulations. The following approach is commonly used:

\[D_{ar} = \left(1 - 0.4 \sqrt{\varepsilon_r} \right) D_e \]

(28)

where: \(D_{ar} \) – ferrite grain size accounting for the retained strain in the austenite, \(D_e \) - ferrite grain size calculated from equation (27), \(\varepsilon_r \) - retained strain in the austenite at the beginning of the phase transformation.
3.3. Phase transformations

Two phase transformation models were implemented into the database. The first is an upgrade of the JMAK equation and the second is based on the control theory and describes the kinetic of phase transformations using the second order differential equation. Both models were described in earlier publications. The former in (Pietrzyk & Kuziak, 2012) and the latter, which will be referred to as CONT model, in (Milenin et al., 2015). Therefore, very brief information about the models is given below. JMAK equation (7) adapted to the phase transformation has the form:

\[X = 1 - \exp\left(-\frac{nk^n}{t}\right) \]

(29)

where: \(n \) – Avrami exponent, \(k \) – coefficient.

The following upgrades of this equation were introduced in the present work:

- Avrami coefficient \(n \) is assumed constant for each transformation (the first row in table 1).
- Coefficient \(k \) for ferrite, pearlite and bainite transformations was introduced as a function of temperature, as shown in (Donnay et al., 1996; Pietrzyk & Kuziak, 2012). Modified Gauss function was used for the ferrite transformation (Donnay et al., 1996). Nose of this function is located at the temperature of maximum rate of the transformation. Exponential functions were used for pearlite and bainite transformations (Pietrzyk & Kuziak, 2012), see the second row in table 1.
- Using Gauss function for \(k_f \) does not require the incubation time. It is assumed that ferrite transformation begins when 5% of ferrite is predicted by equation (29).

Calculations of carbon concentration in the austenite during both ferrite and bainite transformations were added. In consequence prediction of the occurrence of the retained austenite became possible. Equations describing the incubation time for pearlite and bainite are given in the third row in table 1.

The \(T_0 \) temperature concept was added (Bhadeshia, 1988). The \(T_0 \) curve is the locus of points on the temperature vs. carbon concentration plot where austenite and ferrite of the same chemical composition have identical free energies. This concentration is a boundary condition for calculation of the carbon distribution in the austenite using diffusion model.

Table 1. Main equations in the phase transformation model

<table>
<thead>
<tr>
<th>Ferrite</th>
<th>Pearlite</th>
<th>Bainite</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = a_4)</td>
<td>(n = a_4)</td>
<td>(n = a_4)</td>
</tr>
<tr>
<td>(k_f = \frac{a_5}{D_r} \exp\left(-\frac{\left(T - A_{23} - \frac{400}{D_r} + a_6\right)^{a_7}}{a_7}\right))</td>
<td>(k_p = a_{15})</td>
<td>(k_b = a_{23} \exp\left[\left(\frac{T - a_{21}}{a_{22}}\right)^2\right])</td>
</tr>
<tr>
<td>(\tau_p = \frac{a_6}{\left(A_{x1} - T\right)^{a_{10}}} \exp\left(\frac{a_{10}}{RT}\right))</td>
<td>(\tau_b = \frac{a_{12}}{\left(B_s - T\right)^{a_{18}}} \exp\left(\frac{a_{18}}{RT}\right))</td>
<td></td>
</tr>
</tbody>
</table>
the two equilibrium states. Equilibrium carbon concentrations at the austenite-ferrite \((c_{\alpha}) \) and austenite-cementite \((c_{\beta}) \) interfaces are calculated from the following equations:

\[
c_{\alpha} = c_{\alpha 0} + c_{\alpha 1} T
\]

\[
c_{\beta} = c_{\beta 0} + c_{\beta 1} T
\]

Details of the numerical solution of this phase transformation model are given in (Pietrzyk & Kuziak, 2012). Briefly, modelling starts with equation (29) when the temperature drops below \(A_{c3} \). The ferrite volume fraction \(X_f \) is calculated with respect to the maximum volume fraction of this phase in steel \(V_{f_{\text{max}}} \). Thus, the volume fraction of ferrite with respect to the whole volume of the material is \(V_f = X_f V_{f_{\text{max}}} \) for the fixed temperature \(T \). The value of \(X_f \) calculated from equation (29) for the varying temperature has to be corrected due to a change of the equilibrium ferrite volume fraction \(V_{f_{\text{max}}} \), which is the function of temperature:

\[
V_{f_{\text{max}}} = \frac{c_{\alpha} - c_0}{c_{\alpha} - c_\alpha}
\]

where: \(c_0 \) – carbon concentration in the steel, \(c_\alpha \) – carbon concentration in the ferrite.

The correction of \(X_f \) is made as follows:

\[
X_f(T_{eul}) = X_f(T) \frac{V_{f_{\text{max}}}(T)}{V_{f_{\text{max}}}(T_{eul})}
\]

Average carbon content in the austenite \((c_{\gamma}) \) increases with increasing volume fraction of ferrite:

\[
c_{\gamma} = \frac{c_0 - X_f c_\alpha}{1 - X_f}
\]

Simulation continues until the transformed volume fraction achieves 1. However, when carbon content in the austenite exceeds the limiting value \((c_{\beta}) \), the pearlite transformation begins in the remaining austenite. For faster cooling bainitic transformation occurs.

Accounting for changes of carbon concentration in the austenite during bainitic transformation is another upgrade of the JMAK model. The current average carbon content in the austenite during bainitic transformation is described by the following equation:

\[
c_f = \frac{c_0 - (V_f + \frac{V_b}{1-p}) c_\alpha}{1 - V_f - \frac{V_b}{1-p}}
\]

In equation (37) \(p \) represents probability that a new platelet of the bainitic ferrite forms in a close neighbourhood of the existing one and its diffusion field is constrained by this neighbour. This probability is well explained by Katsamas and Haidemenopoulos (2008) and the details of the numerical solution of the present model are given in (Pietrzyk et al., 2016).

The idea of the second phase transformation model is based on the Leblond equation (Leblond & Devaux, 1984). The main assumption of Leblond was that the rate of the transformation is proportional to the distance from the equilibrium. The first order differential equation with respect to time was obtained. This equation could not reproduce delay of the response due to nucleation and it required introduction of the incubation time. To avoid this problem the second order differential equation was proposed in (Milenin et al., 2015). It was based on the description of the second order inertia term in the control theory, therefore, this model is referred to as the CONT model. The volume fraction of the new phase \(X \) is calculated by the solution of the following equation:

\[
B_1 \frac{d^2 X}{dt^2} + B_2 \frac{dX}{dt} + X = f(T)
\]

where: \(B_1, B_2 \) – time constants.

In equation (38) \(X \) is the volume fraction of the phase with respect to the maximum volume fraction of this phase in a considered temperature. For ferrite transformation we have:

\[
f(T) = \frac{V_{f_{\text{max}}}(T)}{V_{f\text{_{eul}}}}
\]

where: \(V_{f_{\text{max}}}(T) \) – maximum volume fraction of ferrite in the temperature \(T \), \(V_{f\text{_{eul}}} \) – volume fraction of ferrite in steel, calculated from equation (34) at the eutectic point.

In order to describe phenomena of nucleation and growth, the two time constants were introduced in the model and were based on the mathematical description of the second order inertia term. Time constant \(B_1 \) is responsible for the delay of the response in the initial stage of transformation, therefore, it was correlated with the nucleation rate. Since
this rate directly depends on undercooling below A_{E3} temperature, the following definition was assumed:

$$B_1 = a_4 \exp\left[-a_5 \left(A_{E3} - T \right) \right]$$ \hspace{1cm} (40)

B_2 time constant is responsible for the growth of the ferrite phase, so it was correlated with mobility of the interface and diffusion coefficient. Thus, it can be assumed that B_2 constant can be presented in the form of modified inverse Gauss function with a nose at the temperature of maximum transformation rate (a_7 coefficient). The following equation was proposed:

$$B_2 = \left\{ a_6 \exp\left[-\left(\frac{a_7 - T}{a_6} \right)^2 \right] \right\}^{-1}$$ \hspace{1cm} (41)

With the application of such an approach it is possible to model metallurgical processes in real time, unlike in the case of approaches which use complicated computation methods. On the other hand, proposed model describes the phase transformation in variable temperature conditions (unlike simple model such as JMAK). Equation (38) is solved using finite difference method. The CONT model has one important advantage comparing to the JMAK. During solution of equation (38) the right hand side changes as a function of the temperature and the correction of X using equation (35) is not needed.

3.4. Mechanical properties

Various models of mechanical properties were introduced into the database. The first set contains conventional models developed in the second half of the XXth century. Beyond this, new models accounting for the effect of precipitation and dedicated to HSLA and AHSS grades were added to the base.

3.4.1. Conventional models

Conventional equations describing mechanical properties as function of the ferrite grain size and chemical composition were used as the default models in the VirtRoll database. The review of these models as well as coefficients for various steels can be found in (Lenard et al., 1999). Equations proposed by Hodgson and Gibbs (1992) were used as yield stress (Re) and ultimate tensile strength (Rm) models:

$$\text{Re} = 62.6 + 26.1[Mn] + 60.2[Si] + 759[P] +$$

$$212.9[Cu] + 3286[N] + \frac{19.7}{\sqrt{0.001D_{\alpha}}}$$ \hspace{1cm} (42)

$$\text{Rm} = 164.9 + 634.7[C] + 53.6[Mn] + 99.7[Si] + 652[P] +$$

$$472.6[Ni] + 3339[N] + \frac{11}{\sqrt{0.001D_{\alpha}}}$$ \hspace{1cm} (43)

where: D_{α} – ferrite grain size.

3.4.2. Models accounting for the effect of precipitations

The new contribution of the present work is connected with accounting for precipitation during cooling. Physical simulations of cooling the strip in the coil and measurement of final mechanical properties were performed in the CEIT. Approximation of the results allowed to propose relation between mechanical properties and the coiling temperature, see Section 6.3. The model developed in the ArcelorMittal was another model implemented into the VirtRoll system database. This model uses the linear approach based on the summation of the contributions of solid solution (σ_{ss}), grain size(σ_{gs}), dislocations (σ_{ρ}), presence of secondary phases (σ_{MA}) and fine precipitation ($\Delta \sigma_{prec}$). The yield stress of the product is calculated as:

$$\text{Re} = \sigma_0 + \sigma_{ss} + \sigma_{gs} + \sigma_{\rho} + \sigma_{MA} + \Delta \sigma_{prec}$$ \hspace{1cm} (44)

The components of equation (44) account for the contribution of various factors are:

$$\sigma_{ss} = \sigma_0 + 32.3[Mn] + 83.2[Si] + 11[Mo] + 354[N_{\text{prec}}]^{0.5}$$ \hspace{1cm} (45)

$$\sigma_{gs} = 1.05\alpha M \mu b \sqrt{\sum_{2\alpha < sin} f_i \sqrt{\theta_i} + \sqrt{\frac{\pi}{10} \sum_{c < sin} f_i} d_z^{z^{-\frac{1}{2}}}}$$ \hspace{1cm} (46)

$$\sigma_{\rho} = \alpha M \mu b \sqrt{\rho}$$ \hspace{1cm} (47)

$$\sigma_{MA} = 900 f_{MA}$$ \hspace{1cm} (48)

$$10.8 \frac{x^{0.5}}{x} \ln\left(\frac{x}{6.125 \cdot 10^{-4}} \right)$$ \hspace{1cm} (49)

where: M – Taylor factor, b – length of the Burgers vector, μ – shear modulus, ρ – dislocation density, f_i
– low \((2^\circ < \theta_i < 15^\circ)\) and high \((\theta_i \geq 15^\circ)\) angle boundary fractions, \(\theta_i\) – misorientation angle, \(d_2^o\) - unit size considering the low angle misorientation criterion.

Details of the term accounting for the grain size are given in (Iza-Mendia & Gutiérrez, 2013). Average dislocation density in equation (47) is determined by the analysis of the Kernel Average Misorientation (KAM) by EBSD. KAM reflects the local misorientation gradients within a given region. For that purpose, the approach proposed in (Kubin et al., 2003) is adopted:

\[
\rho = 2 \frac{\text{KAM}}{bu}
\]

where: \(u\) – the length related to Kernel.

New model, which predicts the precipitation hardening effect \((\Delta \sigma_{\text{prec}})\) in coil for AHSS was developed by ArcelorMittal, as well. Calculation of the precipitation hardening effect \((\Delta \sigma_{\text{prec}})\) does not require information of precipitates size or density. The contribution of precipitation on the total stress depends on the Ti and Nb content. The effect of the thermal path is accounted for by integration with respect to time. Start temperature is calculated from the phase transformation model. Contribution of Nb and Ti to the yield stress is given by:

\[
\Delta \sigma_{\text{prec}} = K_1 \exp \left[\frac{1}{K_2} \log \left(\int_0^T \frac{dT}{K_3} \right) \right] K_4
\]

Coefficients \(K_1 - K_3\) in equation (51) are different for Nb and Ti steels and they are given in table 2. Coefficient \(K_4\) is defined as:

\[
K_4 = 10^{16} \frac{T}{\exp \left(\frac{28000}{RT} \right)}
\]

Table 2. Coefficients in equation (51) for various contents of Ti and Nb.

<table>
<thead>
<tr>
<th>steel</th>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(K_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.035%Nb</td>
<td>129.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.13%Ti</td>
<td>286</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Selected results of calculations using equation (51) are presented in Section 6.3.

4. EXPERIMENTS

A variety of steel grades was investigated. Chemical compositions of these steels are given in Section 2.2. Three types of experiments were performed for identification of the models. Axisymmetric compression of cylindrical samples at various temperatures and strain rates was used to determine the coefficients in the flow stress models. Stress relaxation tests (Elwazri et al., 2004) were used for identification of the static part of the microstructure evolution model. Coefficients in the DRX and MDRX models were determined from the shape of the flow curves for low values of the Zener-Hollomon parameter. Strains at the peak stress and at the saturation stress were evaluated for various temperatures and strain rates and the results were approximated by equations in Section 3.2. Finally, dilatometric tests for various cooling rates were performed to supply data for the identification of the phase transformation models. For the HSLA and bainitic steels various temperatures and times between last deformation and beginning of transformation were used to supply data for different initial microstructures. Thermal cycles for all tests for the HSLA and bainitic steels are shown in figure 3. They include recrystallized (tests A and B) and not recrystallized (tests C and D) austenite.

Following this, a set of experiments was performed to supply data for the validation and verification of the models. Physical simulations of the hot strip rolling were performed using plane strain compression (PSC) tests on the Gleeble 3800 thermomechanical simulator. In the PSC test a cuboid sample is compressed between two flat dies, see (Abad et al., 2001) for details. In this work the samples which measured 15\times20\times35 mm, were compressed in the dies with the width of 10 mm. The PSC test allows large plastic deformation and the state of strains is similar to that, which occurs in the flat rolling process. Therefore, the plane strain compression test has been for years used for physical simulation of rolling processes. Temperature and strain history can be easily reproduced in this test. Samples can be quenched after each deformation stage and micro-
structure can be investigated. However, problems with the interpretation of results of such physical simulation are connected with extensive inhomogeneity of strains and temperatures. Deformation and temperatures differ significantly at the cross section of the sample and, what is even more important, the shape coefficient \(\Delta \) defined as the sample height-to-die width ratio changes during the test. FE simulation of the multi stage PSC test help to interpret the results, see (Pietrzyk et al., 2017) for details.

The tests for all materials were performed and the results were used for identification and validation of the models in the database. However, only selected tests for the HSLA and bainitic steels are presented in the paper.

\[\text{Fig. 4. Schemes of deformation and heat treatment for bainitic steels investigated in the present work.} \]

Two variants of physical simulations were considered for bainitic steels, see (Pietrzyk et al., 2017) for details. Variant 1 is presented schematically in figure 4a. In this variant lower temperatures of deformation were applied. Variant 2 is presented schematically in figure 4b. This variant is characterised by higher temperatures of deformation. Quantitative data for both variants are given in table 3. Two preheating temperatures 1200°C and 1300°C were applied for each schedule, distinguished as A and B variants. Grain size prior to the first deformation (after soaking) was 67 \(\mu \)m for A and 191 \(\mu \)m for B. Cooling from the last deformation temperature to the holding temperature was at the rate of 20°C/s. Three holding temperatures \(T_h \) during cooling were used for each variant. Temperature \(T_h \) was 400, 450 and 500°C for cooling versions a, b and c, respectively.

\[\text{Table 3. Parameters of the investigated variants of physical simulations.} \]

<table>
<thead>
<tr>
<th>parameter</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soaking temperature</td>
<td>1200°C (A), 1300°C (B)</td>
<td>1200°C</td>
<td>1200°C</td>
</tr>
<tr>
<td>Soaking time</td>
<td>900 s</td>
<td>900 s</td>
<td>900 s</td>
</tr>
<tr>
<td>Deformation temperature</td>
<td>1200°C</td>
<td>1200°C</td>
<td>1100°C</td>
</tr>
<tr>
<td>Strain; strain rate</td>
<td>0.35; 1 s(^{-1})</td>
<td>0.35; 0.1 s(^{-1})</td>
<td>0.4; 1 s(^{-1})</td>
</tr>
<tr>
<td>Interpass time</td>
<td>15 s</td>
<td>10 s</td>
<td>15 s</td>
</tr>
<tr>
<td>Deformation temperature</td>
<td>1180°C</td>
<td>1180°C</td>
<td>1000°C</td>
</tr>
<tr>
<td>Strain; strain rate</td>
<td>0.25; 2 s(^{-1})</td>
<td>0.3; 0.5 s(^{-1})</td>
<td>0.4; 1 s(^{-1})</td>
</tr>
<tr>
<td>Interpass time</td>
<td>40 s</td>
<td>10 s</td>
<td>15 s</td>
</tr>
<tr>
<td>Deformation temperature</td>
<td>950°C</td>
<td>1160°C</td>
<td>900°C</td>
</tr>
<tr>
<td>Strain; strain rate</td>
<td>0.2; 7 s(^{-1})</td>
<td>0.3; 0.5 s(^{-1})</td>
<td>0.4; 1 s(^{-1})</td>
</tr>
<tr>
<td>Interpass time</td>
<td>5 s</td>
<td>10 s</td>
<td>0 s/10 s</td>
</tr>
<tr>
<td>Deformation temperature</td>
<td>930°C</td>
<td>1140°C</td>
<td>-</td>
</tr>
<tr>
<td>Strain; strain rate</td>
<td>0.15; 10 s(^{-1})</td>
<td>0.2; 1 s(^{-1})</td>
<td>-</td>
</tr>
<tr>
<td>Interpass time</td>
<td>4 s</td>
<td>32 s</td>
<td>-</td>
</tr>
<tr>
<td>Deformation temperature</td>
<td>910°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strain; strain rate</td>
<td>0.1; 10 s(^{-1})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interpass time</td>
<td>3 s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deformation temperature</td>
<td>890°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strain; strain rate</td>
<td>0.1; 10 s(^{-1})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interpass time</td>
<td>19.5 s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Holding temperature</td>
<td>(T_h)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Holding time</td>
<td>5400 s</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Schematic illustration of the tests performed for the HSLA steels is shown in figure 5. In this variant the last temperature was 900°C and cooling begun either right after deformation (no recrystallization) or 10 s after deformation (full recrystallization). Quantitative data for the variant 3 are given in table 3.

Grain size prior to the first deformation (after soaking) was 75 \(\mu \)m. Cooling from the last deformation temperature to the holding temperature was at the rate of 20°C/s. Different holding temperatures \((T_h = 400 + 700°C) \) representing cooling in the coil were used for each variant.
After each test for the HSLA and bainitic steels the samples were quenched and the microstructure characterization, as well as mechanical properties measurement, were performed. Phase composition at the centre of the sample was evaluated and was used to validate the phase transformation model.

Analysis of strains in the PSC tests was performed first and strong inhomogeneities were observed. Different distributions of strains were obtained at different stages of deformation, depending on the shape coefficient Δ. In the variant 1 height of the sample in subsequent staged was 15; 11.08; 7.52; 6.61 and 6.06 mm what gave shape coefficients $\Delta = 1.5; 1.108; 0.893; 0.752; 0.661; 0.606$ respectively for stages 1 – 6. This change of the shape coefficient involves changes of the inhomogeneity of deformation. The general approach followed by the scientists was to investigate the material in the centre of the sample, assuming that strains and temperatures at that location are close to the nominal values. The nominal temperature is assumed equal to the initial one, and the nominal strain is calculated as:

$$\varepsilon_h = \frac{2}{\sqrt{3}} \ln \left(\frac{h_i}{h_{i+1}} \right)$$ \hspace{1cm} (53)

where: h_i – initial height of the sample, h_{i+1} – final height of the sample after deformation, i – pass number.

Strains calculated by the FE code in the centre of the sample were much higher than nominal strains calculated from equation (53) (figure 6), which are generally used to calculate recrystallization kinetics and grain size. It means that classical interpretation of the tests results may introduce errors.

5. INVERSE APPROACH

Inverse analysis was used to determine the material parameters in the models corrected against the effect of various disturbances in the tests. In the plastometric tests it is the effect of friction and deformation heating. Since automatic temperature control system is used in the tests, the latter effect is particularly important. In the inverse analysis the temperature measured by the thermocouple welded to the sample is introduced as a Dirichlet boundary condition in the FE code. In the dilatometric tests the effect of recalescence has to be eliminated.

5.1. Basic principles of the approach

The inverse algorithm described by Szeliga et al. (2006) and tested and validated by Szeliga and Pietrzyk (2007) was used. In this algorithm the inverse problem is transferred into the optimization task. Thus, the coefficients in the models were determined using optimization techniques, as it is shown schematically in figure 7. In this figure a is the vector of coefficients in the model, p is the vector of parameters of experiments and d is the vector of outputs of the model, which are the parameters measured in the experiment. In plastometric tests p is composed of temperatures and strain rates in the tests and d is composed of measured forces. In dilatometric tests p is composed of cooling rates in the tests and d is composed of measured start and end temperatures of transformations as well as phase volume fractions. The quadratic norm of the error between measured and calculated output parameters in the tests was used as the objective function:

- For the flow stress model
For the phase transformation model

\[
\Phi = \left[\frac{1}{N_t} \sum_{j=1}^{N_t} \left(\frac{F_{ij}^m - F_{ij}^c}{F_{ij}^m} \right)^2 + \frac{1}{N_c} \sum_{j=1}^{N_c} \left(\frac{T_{ij}^m - T_{ij}^c}{T_{ij}^m} \right)^2 \right]^{1/2}
\]

where: \(N_t \) – number of plastometric tests, \(N_s \) – number of load measurement sampling points in one test, \(F_{ij}^m, F_{ij}^c \) – measured and calculated force, \(N_{cr} \) – number of cooling rates in dilatometric tests, \(N_{tc} \) – number of characteristic temperatures measured for one cooling rate, \(N_p \) – number of phases, \(T_{ij}^m, T_{ij}^c \) – measured and calculated start and end temperatures for phase transformations, \(V_{ij}^m, V_{ij}^c \) – measured and calculated volume fractions of phases.

5.2. Identification of material models

All models presented in Chapter 3 contain coefficients, which were identified on the basis of the experimental tests. As it has been mentioned, plastometric tests, stress relaxation tests and dilatometric tests were subsequently used for identification of the flow stress, microstructure evolution and phase transformation models. The coefficients in the flow stress equations (1) - (6) obtained for the investigated steels are given in tables 4-7.

The coefficients of the microstructure evolution models were determined on the basis of experiments for the majority of steels investigated in this work. Some of the coefficients were taken from the literature. Stress relaxation tests were used to determine coefficients in the static recrystallization model. Interpretation of these tests is described in (Smith et al., 2006) and the values of the coefficients are given in Table 8. Coefficients in equation (12) describing grain size after static recrystallization for the DP steels S447, S448 and S449 were taken from the literature (Kuziak & Pietrzyk, 2016).

Coefficients in equations describing the dynamic recrystallization were determined on the basis of the analysis of the flow curves. These coefficients are given in table 9 and table 10 for the DRX and the MDRX, respectively. Coefficients in equations (24) and (25) describing grain size after dynamic and metadynamic recrystallization for the HSLA steels S401, S403 and S404 were taken from the literature (Abad et al., 2001). Finally, coefficients in equation (14) describing grain growth are given in Table 11.

In a majority of steels investigated in the present work multiphase structures are required and the ferrite grain size is of minor importance. Therefore, the model based on equation (27) was used for all steels and the coefficients were taken from the literature (Hodgson & Gibbs, 1992). Values of these coefficients are given in table 12.

The coefficients in the phase transformation models were determined by the inverse analysis of the dilatometric tests. The inverse algorithm described Pietrzyk and Kuziak (2012) was applied. All the tests were performed within this work for the investigated four groups of steels. In the case of the HSLA steels and bainitic steels four different thermal cycles between last deformation and beginning of transformation were applied, see figure 3. Inverse analysis have shown that the time after deformation...
Table 5. Coefficients in the flow stress equation (3).

<table>
<thead>
<tr>
<th>steel</th>
<th>K</th>
<th>Q</th>
<th>n</th>
<th>m</th>
<th>K_{opt}</th>
<th>Q_{opt}</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>S401</td>
<td>8.9004</td>
<td>2987.9</td>
<td>0.35586</td>
<td>0.098992</td>
<td>0.20517</td>
<td>6563.8</td>
<td>0.84624</td>
</tr>
<tr>
<td>S403</td>
<td>11.159</td>
<td>2757.1</td>
<td>0.36997</td>
<td>0.099419</td>
<td>0.22532</td>
<td>6479.5</td>
<td>0.9513</td>
</tr>
<tr>
<td>S404</td>
<td>12.475</td>
<td>2654.6</td>
<td>0.37527</td>
<td>0.097314</td>
<td>0.26277</td>
<td>6341.2</td>
<td>0.98103</td>
</tr>
<tr>
<td>S405</td>
<td>11.041</td>
<td>2828.1</td>
<td>0.3614</td>
<td>0.082657</td>
<td>0.54491</td>
<td>6140.5</td>
<td>4.8414</td>
</tr>
<tr>
<td>S406</td>
<td>5.3887</td>
<td>3966.1</td>
<td>0.37585</td>
<td>0.11121</td>
<td>0.22373</td>
<td>7208.3</td>
<td>2.0923</td>
</tr>
<tr>
<td>S407</td>
<td>12.601</td>
<td>5402.9</td>
<td>1.4358</td>
<td>0.11422</td>
<td>0.42871</td>
<td>6311.6</td>
<td>7.0754</td>
</tr>
<tr>
<td>S447-S449</td>
<td>11.041</td>
<td>2828.1</td>
<td>0.3614</td>
<td>0.082657</td>
<td>0.54491</td>
<td>6140.5</td>
<td>4.8414</td>
</tr>
<tr>
<td>AHSS9</td>
<td>38.628</td>
<td>1047.6</td>
<td>0.41819</td>
<td>0.13785</td>
<td>0.49533</td>
<td>6057.8</td>
<td>3.2179</td>
</tr>
<tr>
<td>AHSS10</td>
<td>45.706</td>
<td>164.85</td>
<td>0.17743</td>
<td>0.13251</td>
<td>0.90192</td>
<td>5474.7</td>
<td>6.451</td>
</tr>
<tr>
<td>AHSS11</td>
<td>69.291</td>
<td>241.71</td>
<td>0.39393</td>
<td>0.13499</td>
<td>1.1294</td>
<td>5146.2</td>
<td>6.8212</td>
</tr>
<tr>
<td>AHSS12</td>
<td>23.622</td>
<td>1669.3</td>
<td>0.30189</td>
<td>0.14004</td>
<td>1.13</td>
<td>5237.1</td>
<td>4.283</td>
</tr>
</tbody>
</table>

Table 6. Coefficients in the flow stress equation (4).

<table>
<thead>
<tr>
<th>A_0</th>
<th>n_0</th>
<th>a_0</th>
<th>α_0</th>
<th>β_0</th>
<th>α_1</th>
<th>β_1</th>
<th>α_2</th>
<th>β_2</th>
<th>α_3</th>
<th>β_3</th>
<th>α_4</th>
<th>β_4</th>
<th>α_5</th>
<th>β_5</th>
<th>α_6</th>
<th>β_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.462\times10^{-1}</td>
<td>129</td>
<td>0.0456</td>
<td>0.00689</td>
<td>0.83869</td>
<td>0.3493</td>
<td>7.49</td>
<td>7.493</td>
<td>7.7134</td>
<td>7.7996</td>
<td>2.6</td>
<td>6.17</td>
<td>4.90</td>
<td>7.03052</td>
<td>6.2294</td>
<td>4.898</td>
<td>5.0817</td>
</tr>
<tr>
<td>6.462\times10^{-1}</td>
<td>2828.1</td>
<td>0.3614</td>
<td>0.082657</td>
<td>0.54491</td>
<td>6140.5</td>
<td>4.8414</td>
<td>6341.2</td>
<td>0.98103</td>
<td>6140.5</td>
<td>4.8414</td>
<td>6341.2</td>
<td>0.98103</td>
<td>6140.5</td>
<td>4.8414</td>
<td>6341.2</td>
<td>0.98103</td>
</tr>
</tbody>
</table>

Table 7. Coefficients in the flow stress equation (6).

<table>
<thead>
<tr>
<th>σ_0</th>
<th>α_0</th>
<th>β_0</th>
<th>α_1</th>
<th>β_1</th>
<th>α_2</th>
<th>β_2</th>
<th>α_3</th>
<th>β_3</th>
<th>α_4</th>
<th>β_4</th>
<th>α_5</th>
<th>β_5</th>
<th>α_6</th>
<th>β_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0005056</td>
</tr>
<tr>
<td>5.3359</td>
<td>9.5982</td>
<td>11.528</td>
<td>0.23759</td>
<td>9.5982</td>
<td>2.7505</td>
<td>0.26145</td>
<td>7.6736</td>
<td>0.39826</td>
<td>5.7728</td>
<td>3.3461</td>
<td>5.7728</td>
<td>3.3461</td>
<td>5.7728</td>
<td>3.3461</td>
</tr>
</tbody>
</table>

Computer Methods in Materials Science
Table 8. Coefficients in microstructure evolution equations for static recrystallization.

<table>
<thead>
<tr>
<th>steel</th>
<th>n</th>
<th>A</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(Q_{SRX})</th>
<th>B</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
<th>(Q_{DSRX})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S401</td>
<td>1</td>
<td>7.42×10^{-11}</td>
<td>5.6</td>
<td>0.53</td>
<td>1</td>
<td>180000</td>
<td>1.4</td>
<td>1</td>
<td>0</td>
<td>0.56</td>
<td>0</td>
</tr>
<tr>
<td>S403</td>
<td>1</td>
<td>7.42×10^{-11}</td>
<td>5.6</td>
<td>0.53</td>
<td>1</td>
<td>180000</td>
<td>1.4</td>
<td>1</td>
<td>0</td>
<td>0.56</td>
<td>0</td>
</tr>
<tr>
<td>S404</td>
<td>1</td>
<td>7.42×10^{-11}</td>
<td>5.6</td>
<td>0.53</td>
<td>1</td>
<td>180000</td>
<td>1.4</td>
<td>1</td>
<td>0</td>
<td>0.56</td>
<td>0</td>
</tr>
<tr>
<td>S405</td>
<td>2.18</td>
<td>1.69×10^{-11}</td>
<td>1.62</td>
<td>0.3</td>
<td>0.787</td>
<td>227776</td>
<td>14.43</td>
<td>0.962</td>
<td>0</td>
<td>0.563</td>
<td>28638</td>
</tr>
<tr>
<td>S406</td>
<td>1.53</td>
<td>1.738×10^{-11}</td>
<td>3.6</td>
<td>0.3</td>
<td>0.7075</td>
<td>205000</td>
<td>1.487</td>
<td>0.055</td>
<td>0.08</td>
<td>0.88</td>
<td>8172</td>
</tr>
<tr>
<td>S407</td>
<td>2.18</td>
<td>1.806×10^{-11}</td>
<td>2.18</td>
<td>0.345</td>
<td>0.545</td>
<td>258704</td>
<td>7.623</td>
<td>0.936</td>
<td>0.117</td>
<td>0.664</td>
<td>26144</td>
</tr>
<tr>
<td>S447</td>
<td>2.18</td>
<td>1.806×10^{-11}</td>
<td>3.6</td>
<td>0.3</td>
<td>0.7075</td>
<td>207186</td>
<td>63.7</td>
<td>0.739</td>
<td>0.05</td>
<td>0.2</td>
<td>29324</td>
</tr>
<tr>
<td>S448</td>
<td>1.83</td>
<td>1.738×10^{-11}</td>
<td>3.269</td>
<td>0.3</td>
<td>0.7075</td>
<td>207186</td>
<td>63.7</td>
<td>0.739</td>
<td>0.05</td>
<td>0.2</td>
<td>29324</td>
</tr>
</tbody>
</table>

Table 9. Coefficients in microstructural equations for dynamic recrystallization.

<table>
<thead>
<tr>
<th>steel</th>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
<th>(p_6)</th>
<th>(p_7)</th>
<th>(p_8)</th>
<th>(p_9)</th>
<th>|p_{10}|</th>
</tr>
</thead>
<tbody>
<tr>
<td>S401</td>
<td>5.0562×10^{-4}</td>
<td>0.15</td>
<td>0.0088</td>
<td>2.809×10^{-4}</td>
<td>0.26</td>
<td>0.36187</td>
<td>4.60517</td>
<td>1.5</td>
<td>1.6×10^{-4}</td>
<td>0.23</td>
</tr>
<tr>
<td>S403</td>
<td>5.0562×10^{-4}</td>
<td>0.15</td>
<td>0.0088</td>
<td>2.809×10^{-4}</td>
<td>0.26</td>
<td>0.36187</td>
<td>4.60517</td>
<td>1.5</td>
<td>1.6×10^{-4}</td>
<td>0.23</td>
</tr>
<tr>
<td>S404</td>
<td>5.0562×10^{-4}</td>
<td>0.15</td>
<td>0.0088</td>
<td>2.809×10^{-4}</td>
<td>0.26</td>
<td>0.36187</td>
<td>4.60517</td>
<td>1.5</td>
<td>1.6×10^{-4}</td>
<td>0.23</td>
</tr>
<tr>
<td>S405</td>
<td>11.28×10^{-4}</td>
<td>0.1629</td>
<td>0.1774</td>
<td>4.846×10^{-4}</td>
<td>0.1326</td>
<td>0.1677</td>
<td>1.71</td>
<td>1.5</td>
<td>2.293×10^{-4}</td>
<td>0.2499</td>
</tr>
<tr>
<td>S447</td>
<td>5.377×10^{4}</td>
<td>0.355</td>
<td>0.176</td>
<td>5.48×10^{-4}</td>
<td>0.3702</td>
<td>0.1156</td>
<td>1.5</td>
<td>1.5</td>
<td>2.29×10^{-4}</td>
<td>0.3289</td>
</tr>
<tr>
<td>S448</td>
<td>3.7×10^{4}</td>
<td>0.3434</td>
<td>0.1914</td>
<td>8.76×10^{-4}</td>
<td>0.3819</td>
<td>0.1939</td>
<td>1.5</td>
<td>1.5</td>
<td>1.737×10^{-4}</td>
<td>0.325</td>
</tr>
</tbody>
</table>

Table 10. Coefficients in microstructural equations for metadynamic recrystallization.

<table>
<thead>
<tr>
<th>steel</th>
<th>(q_1)</th>
<th>(q_2)</th>
<th>(q_3)</th>
<th>(q_{DSRX})</th>
<th>(q_{GROWT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S401</td>
<td>1</td>
<td>3.1×10^{-8}</td>
<td>0.6</td>
<td>170000</td>
<td>2.6×10^{-4}</td>
</tr>
<tr>
<td>S403</td>
<td>1</td>
<td>3.1×10^{-8}</td>
<td>0.6</td>
<td>170000</td>
<td>2.6×10^{-4}</td>
</tr>
<tr>
<td>S404</td>
<td>1</td>
<td>3.1×10^{-8}</td>
<td>0.6</td>
<td>170000</td>
<td>2.6×10^{-4}</td>
</tr>
<tr>
<td>S405</td>
<td>1.552</td>
<td>0.059</td>
<td>0.9005</td>
<td>301735</td>
<td>2.293×10^{-4}</td>
</tr>
<tr>
<td>S406</td>
<td>2.275</td>
<td>1.714</td>
<td>0.8088</td>
<td>239122</td>
<td>2.229×10^{-4}</td>
</tr>
<tr>
<td>S407</td>
<td>2.068</td>
<td>0.002</td>
<td>1.063</td>
<td>386264</td>
<td>1.737×10^{-4}</td>
</tr>
<tr>
<td>S447</td>
<td>1.447</td>
<td>0.024</td>
<td>0.8398</td>
<td>264135</td>
<td>17370</td>
</tr>
<tr>
<td>S448</td>
<td>1.26</td>
<td>1.089×10^{-4}</td>
<td>0.3217</td>
<td>240904</td>
<td>22290</td>
</tr>
<tr>
<td>S449</td>
<td>1.447</td>
<td>0.0238</td>
<td>0.8398</td>
<td>264135</td>
<td>17370</td>
</tr>
</tbody>
</table>

Table 11. Coefficients in the grain growth equations.

<table>
<thead>
<tr>
<th>steel</th>
<th>(s)</th>
<th>(K)</th>
<th>(Q_{GROWT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S401</td>
<td>7.19</td>
<td>2.67×10^{-4}</td>
<td>349805</td>
</tr>
<tr>
<td>S403</td>
<td>7.19</td>
<td>2.67×10^{-4}</td>
<td>349805</td>
</tr>
<tr>
<td>S404</td>
<td>7.19</td>
<td>2.67×10^{-4}</td>
<td>349805</td>
</tr>
<tr>
<td>S405</td>
<td>7.19</td>
<td>2.67×10^{-4}</td>
<td>349805</td>
</tr>
<tr>
<td>S406</td>
<td>7.36</td>
<td>9.48×10^{-4}</td>
<td>187667</td>
</tr>
<tr>
<td>S407</td>
<td>8</td>
<td>8.575×10^{-4}</td>
<td>361948</td>
</tr>
<tr>
<td>S447</td>
<td>7.19</td>
<td>2.67×10^{-4}</td>
<td>349805</td>
</tr>
<tr>
<td>S448</td>
<td>7.19</td>
<td>2.67×10^{-4}</td>
<td>349805</td>
</tr>
<tr>
<td>S449</td>
<td>7.19</td>
<td>2.67×10^{-4}</td>
<td>349805</td>
</tr>
</tbody>
</table>

Table 12. Coefficients in equation (27) describing ferrite grain size in steels with \(D_{eq}<0.35\%\).

\[
\begin{align*}
 f_0 & = -0.4 \\
 f_1 & = 6.37 \\
 f_2 & = 24.2 \\
 f_3 & = -59 \\
 f_4 & = 22 \\
 f_5 & = 0.015
\end{align*}
\]

at 1100°C has small influence on the kinetics of transformation and similar coefficients were obtained for the tests A and B. In the test D deformation was below the \(A_\gamma\) temperature and these data were not used in the model identification. Coefficients in the phase transformation models obtained from the inverse analysis for all steels and for all thermal cycles are given in table 13.
6. NUMERICAL TESTS OF THE MODELS AND DISCUSSION

The contribution of this work is discussed under the two aspects. The first is connected with the specific functionalities of the developed database. The second includes new aspects of modelling of materials investigated in the paper.

6.1. Functionalities of the database

The database itself is not a modern solution while it is based on the well-known object oriented database management system MongoDB. However, the most innovative part is related to the architecture of the whole system which includes the following elements using information stored in the database:

- **VirtRoll frontend and backend** – the database delivers records on materials, their properties and chemical compositions, devices and already designed processes as well as optimization and sensitivity analysis methods with their parameters. In this part of the system created database is the most integral part.

- **Scalarm platform as middleware** – this element of the whole solution keeps information on the samples of the computational space used by sensitivity analysis and optimization methods. The data are passed usually one way from the database to Scalarm platform as the information on how to realize calculations.

- **FEM based module for calculations on the HPC side** – mainly the records related to configuration of devices in particular designs are delivered to this module of the system.

- **External EDA knowledge base delivering data on materials and models** – the exchange between EDA knowledge base and database presented in this paper can be realized two ways i.e. EDA can deliver information on material models and their parameters, while the proposed database feeds EDA with data on material properties and chemical composition.

Rich communication interfaces implemented for the purposes of data exchange between created database and other external systems offer functionality, which can be easily extended. Thus, the scalability of proposed solution is high and allows for further development.
6.2. Validation and verification of the models

Numerical simulation of the PSC tests were used to validate and verify the models. Authors’ FE code (Pietrzyk, 2000) was used in simulations. The tests supplied the data for verification of the microstructure evolution model, as well as for the analysis of the effect of coiling temperature on the mechanical properties of products. Evaluation of the error in interpretation of experimental data connected with neglecting strain inhomogeneity in the PSC test was the first objective of simulations. Application of the simulations to predict microstructure of steels after the process and validation of the microstructure evolution model was performed next.

Fig. 8. Calculated grain size and recrystallized volume fraction changes during the test in Fig. 5 for the Nb (S401) and Nb+Mo (S403) steels.

Numerical simulations were carried out for all the performed tests and for all the investigated steels. Due to space limit results for the HSLA steels only are presented in this Section. Some of the results of simulations of grain size evolution during the tests for the bainitic steels, as well changes of the recrystallized volume fraction for these steels, are shown and discussed in (Pietrzyk et al., 2017). Calculated grain size and recrystallized volume fraction changes during the test in figure 5 are shown in figure 8. It is seen that at the passes 1 and 2 the difference between the two steels is negligible. After the last pass at 800°C recrystallization is slower for the Nb+Mo steel (S403). Calculated final grain size is comparable for both steels about 21 μm and similar value was measured in the experiments.

Fig. 9. Kinetics of transformation after cycles in figure 5 with the coiling temperatures of 700°C (a), 600°C (b) and 500°C (c), for recrystallized austenite (meaning of symbols is the same in all plots).

In order to find the relationship between microstructure and mechanical properties, different coiling temperatures and holding times after last transformation were applied. Coiling was reproduced by holding the samples for 90 min in the constant tem-
perature followed by slow cooling in the furnace at 1°C/s to the room temperature. Numerical simulations of this sequence were performed and the results are presented in figure 9. It is seen in this figure that kinetics of the ferrite transformation is faster for the Nb steel and bainite start temperature is much higher for this steel. Results of calculations were confronted with the microstructure observed in the experiments.

Fig. 10. Optical micrographs of microstructures corresponding to Nb steel (S401) at the coiling temperatures 700°C (a) and 600°C (b).

In figure 10 the optical micrographs of the specimens of Nb microalloyed steel (S401) coiled at 700 and 600°C are shown. A gradual shift from high temperature phases such as Polygonal Ferrite (PF) to lower temperature phases, such as Quasipolygonal Ferrite (QF) and Granular Ferrite (GF) was observed when decreasing the coiling temperature. Mechanical properties were measured for each sample in CEIT and they were approximated as functions of the coiling temperature, see next section. In figure 11 FEG-SEM micrographs corresponding to Nb steel (S401), obtained after different coiling temperatures are presented. In brief, a key point is that in Nb microalloyed steel, when a high coiling temperature is applied, the microstructure is composed by polygonal ferrite (PF) and pearlite (see figure 11a). A combination between quasipolygonal ferrite (QF) and granular ferrite (GF) is formed when coiling temperature decreases (see figure 11b and c).

Fig. 11. FEG-SEM micrographs of microstructures corresponding to Nb steel (S401) at the coiling temperatures 700°C (a) and 600°C (b).

6.3. Mechanical properties

The microstructures after coiling simulations were characterized and mechanical property evaluation (tensile and toughness) was performed, by means of hardness, tensile and Charpy tests. The improvement of mechanical properties is achieved via the control of microstructure, so a wide knowledge of the influence of process parameters on microstructure and therefore, on mechanical properties, is needed. The results relating the mechanical properties to the coiling temperature are summarised below.

Relations between yield stress and ultimate tensile strength and coiling temperature for the HSLA
steels were approximated by the second order polynomials:

\[
Re = a_0 + a_1 T_e + a_2 T_e^2
\]

(56)

\[
Rm = b_0 + b_1 T_e + b_2 T_e^2
\]

(57)

The coefficients in equations (56) and (57) for the HSLA steels are given in table 14.

Table 14. The coefficients in equations describing mechanical properties of the HSLA steels.

<table>
<thead>
<tr>
<th>steel</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(b_0)</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S401 (Nb)</td>
<td>-951.41</td>
<td>4.7938</td>
<td>-0.004</td>
<td>-671.31</td>
<td>4.068</td>
<td>-0.0034</td>
</tr>
<tr>
<td>S403 (Nb+Mo)</td>
<td>-4214.2</td>
<td>16.442</td>
<td>-0.0136</td>
<td>-4380.5</td>
<td>17.247</td>
<td>-0.0143</td>
</tr>
<tr>
<td>S404 (Ti+Mo)</td>
<td>-3197.9</td>
<td>12.994</td>
<td>-0.0111</td>
<td>-3184.2</td>
<td>13.085</td>
<td>-0.0111</td>
</tr>
</tbody>
</table>

Finally, the model which predicts contribution of precipitates to the mechanical properties of the AHSS grades was tested. An increase of the yield stress calculated using equation (51) for cooling schedules characteristic for the hot strip mill is presented in figure 12. It is seen that contribution of precipitates is much larger for the steels containing titanium.

![Fig. 12. An increase of the yield stress calculated using equation (52) for cooling schedules characteristic for the hot strip mill.](image)

7. CONCLUSION

All the parameterized and validated models were saved in one database. Beyond this, the optimal coefficients obtained from the inverse analysis for all the models and all the steels were saved as well. In consequence the models needed at various stages of the manufacturing cycle are available for a large spectrum of steel grades. This aspect is especially important for engineers designing new process for new materials characterized by sophisticated behaviour. However, what is less visible but also crucial, is the usability of proposed database, which in this particular case is related to: database engine efficiency, easy access and scalability. The implementation of the database was performed by using state-of-the-art technologies in web application programming and document databases. This approach allowed to use high efficiency modern database engines aiming at fast and flexible collecting of data set. Furthermore, the implemented database was integrated with VirtRoll system, which made it easy to access through the RESTful architecture encapsulating all the functionalities offered by the database. Due to such solution this server-side application remains open and can be accessed by various end users. Finally, the scalability of proposed approach plays very important role by offering the opportunity to extend the created data sets with new material models equipped with new coefficients, simultaneously assuring to keep the efficiency at stable level independently of the final size of the database.

The integration of the database with the VirtRoll system guarantees fast and accurate simulations of the hot strip rolling, which in connection with optimization procedures and sensitivity analysis is a useful tool supporting technology design. Future extension of the database will be focused mainly on new data delivery being an effect of the inverse analysis procedure applied on results of various laboratory experiments.

ACKNOWLEDGEMENTS

Financial support of the MNiSzW, decision no. 2945/FBWiS/2013/2, in realization of the Research Fund for Coal and Steel (RFCS), project RFSR-CT-2013-00007, is acknowledged.

Resources of ACK Cyfronet AGH are acknowledged.

REFERENCES

Streszczenie