Analysis of the decay time and bound-states energies of a particle in a specific structure GaMnAs/GaAs quantum well
Alaa Y. Ali1,2![]()
*, Hassan H. Ali3![]()
, Mustafa Y. Ali1![]()
![]()
1Electrical Department, Engineering College Alshirqat, Tikrit University, Iraq.
2Natural Resources Research Center, Tikrit University, Iraq.
3Physics Department, College of Education for Pure Science, Tikrit University, Iraq.
*corresponding author
DOI:
https://doi.org/10.7494/cmms.2025.3.1022
Abstract:
The bound states and decay time in a certain quantum well structure (GaMnAs/GaAs) were analyzed and identified at the minimum decay time. Through the analysis of quantum mathematical equations, we derived specific formulas for energies that significantly amplify in the numerical solutions of equations throughout all dimensions of confinement. The quantification and barriers, alongside the well width, without altering the parameters utilized, were predominantly influenced by the spatial dimension parameters, such as the barrier height and well width. The principal bound state and lowest decay time were determined at a well width of 40Å and a barrier thickness of 46.27Å. This work revealed a novel characteristic known as interfacial tunnelling, which refers to the phenomenon where an electron establishes a tunnelling state between two interfaces. This tunnelling process is significantly influenced by the characteristics of the materials used, as well as the dimensions of the wells and barriers.
Cite as:
Ali, A.Y., Ali, H.H., & Ali, M.Y. (2025). Analysis of the decay time and bound-states energies of a particle in a specific structure GaMnAs/GaAs quantum well. Computer Methods in Materials Science, 25(3), 35–46. https://doi.org/10.7494/cmms.2025.3.1022
Article (PDF):

Keywords:
Bound-states energy, GaMnAs/GaAs, Quantum well, Decay time
Publication dates:
Received: 03.07.2025, Accepted: 15.09.2025, Published: 04.12.2025
Publication type:
Original scientific paper
References:
Anemogiannis, E., Glytsis, E. N., & Gaylord, T. K. (1993). Bound and quasi-bound state calculations for biased/unbiased semiconductor quantum heterostructures. IEEE Journal of Quantum Electronics, 29(11), 2731–2740. https://doi.org/10.1109/3.248931
Ariyawansa, G., Perera, A. G. U., Raghavan, G. S., von Winckel, G., Stintz, A., & Krishna, S. (2005). Effect of well width on three-color quantum dots-in-a-well infrared detectors. IEEE Photonics Technology Letters, 17(5), 1064–1066. https://doi.org/10.1109/LPT.2005.846753
Bastard, G., & Brum, J. (1986). Electronic states in semiconductor heterostructures. IEEE Journal of Quantum Electronics, 22(9), 1625–1644. https://doi.org/10.1109/JQE.1986.1073186
Bastard, G., Ziemelis, U. O., Delalande, C., Voos, M., Gossard, A. C., & Wiegmann, W. (1984). Bound and virtual bound states in semiconductor quantum wells. Solid State Communications, 49(7), 671–674. https://doi.org/10.1016/0038-1098(84)90218-7
Bohm, A. R. (2003). Time asymmetry and quantum theory of resonances and decay. International Journal of Theoretical Physics, 42, 2317–2338. https://doi.org/10.1023/B:IJTP.0000005960.42318.f2
Brand, S., & Hughes, D. T. (1987). Calculations of bound states in the valence band of AlAs/GaAs/AlAs and AlGaAs/GaAs/Al-GaAs quantum wells. Semiconductor Science and Technology, 2(9), 607–614. https://doi.org/10.1088/0268-1242/2/9/007
Chen, J. J., Chan, A. K., & Chui, C. K. (1994). A local interpolatory cardinal spline method for the determination of eigenstates in quantum-well structures with arbitrary potential profiles. IEEE Journal of Quantum Electronics, 30(2), 269–274. https://doi.org/10.1109/3.283769
Cortés, N., Chico, L., Pacheco, M., Rosales, L., & Orellana, P. A. (2014). Bound states in the continuum: Localization of Diraclike fermions. Europhysics Letters, 108(4). https://doi.org/10.1209/0295-5075/108/46008
Ejere, A. I., Okunzuwa, S., & Oloko, R. E. (2019). Analytical modeling for nanostructure quantum wells with equispaced energy levels in semiconductor ternary alloys (Ax B1–x C). Nigerian Journal of Technology (NIJOTECH), 38(2), 437–443. https://doi.org/10.4314/NJT.V38I2.20
Geltman, S. (2011). Bound states in delta function potentials. Journal of Atomic, Molecular and Optical Physics, 2011, 573179. https://doi.org/10.1155/2011/573179
Ghatak, A. K., Thyagarajan, K., & Shenoy, M. R. (1987). Numerical analysis of planar optical waveguides using matrix approach. Journal of Lightwave Technology, LT-5(5), 660–667. https://doi.org/10.1109/JLT.1987.1075553
Hutchings, D. C. (1989). Transfer matrix approach to the analysis of an arbitrary quantum well structure in an electric field. Applied Physics Letters, 55(11), 1082–1084. https://doi.org/10.1063/1.101711
Istas, M., Groth, C., Akhmerov, A. R., Wimmer, M., & Waintal, X. (2018). A general algorithm for computing bound states in infinite tight-binding systems. SciPost Physics, 4, 026. https://doi.org/10.21468/SciPostPhys.4.5.026
Khan, I. (2011). Analysis of a finite quantum well. Journal of Electrical Engineering: The Institution of Engineers, Bangladesh, 37(2), 10–1.
Koç, R., & Haydargil, D. (2004). Solution of the Schrödinger equation with one- and two-dimensional double-well potentials. Turkish Journal of Physics, 28, 161–167.
Lucha, W., & Schöberl, F. F. (1999). Solving the Schrödinger equation for bound states with Mathematica 3.0. International Journal of Modern Physics C, 10(4), 607–619. https://doi.org/10.1142/S0129183199000450
Moiseyev, N. (2009). Suppression of Feshbach resonance widths in two-dimensional waveguides and quantum dots: A lower bound for the number of bound states in the continuum. Physical Review Letters, 102, 167404. https://doi.org/10.1103/PhysRevLett.102.167404
Oglah, M. H. (2024). Analyzing the time evolution of a particle by decomposes the initial state confinement in 1D well into the lowest eigenstates energy. Journal for Research in Applied Sciences and Biotechnology, 3(2), 103–107. https://doi.org/10.55544/jrasb.3.2.17
Oglah, M. H., Mohammed, S. J., & El-Daher, M. S. (2020). Determine the lower-state energy of (GaMn) As/GaAs quantum well using localization landscape method. Tikrit Journal of Pure Science, 25(6), 96–102. https://doi.org/10.25130/tjps.v25i6.318
Oglah, M. H., Mohammed, S. J., & El-Daher, M. S. (2021). Simulation of energy resonant tunneling in short-period superlattice (Ga, Mn) As/GaAs quantum wells. AIP Conference Proceedings, 2372(1), 040002. https://doi.org/10.1063/5.0065501
Ohya, S., Muneta, I., & Tanaka, M. (2010). Quantum-level control in III–V-based ferromagnetic-semiconductor heterostructure with a GaMnAs quantum well and double barriers. Applied Physics Letters, 96(5), 052505. https://doi.org/10.1063/1.3298358
Psarakis, E. (2005). Simulation of performance of quantum well infrared photodetectors [Master’s thesis, Naval Postgraduate School Monterey, California]. DTIC. https://apps.dtic.mil/sti/citations/ADA435542
Rodrigues, D. H., Brasil, M. J. S. P., Gobato, Y. G., Holgado, D. P. A., Marques, G. E., & Henini, M. (2012). Anomalous optical properties of GaMnAs/AlAs quantum wells grown by molecular beam epitaxy. Journal of Physics D: Applied Physics, 45(21), 215301. https://doi.org/10.1088/0022-3727/45/21/215301
Saha, A., Bag, B. C., & Sarkar, P. (2007). Effects of barrier fluctuation on the tunneling dynamics in the presence of classical chaos in a mixed quantum-classical system. Pramana: Journal of Physics, 68(3), 377–387. https://doi.org/10.1007/s12043-007-0041-5
Xu, H., Heinzel, T., Evaldsson, M., & Zozoulenko, I. V. (2008). Magnetic barriers in graphene nanoribbons: Theoretical study of transport properties. Physical Review B: Condensed Matter and Materials Physics, 77(24), 245401. https://doi.org/10.1103/PhysRevB.77.245401