On the approach to the analysis of the growth of epitaxial layers by pulsed laser deposition

On the approach to the analysis of the growth of epitaxial layers by pulsed laser deposition

Evgeny L. Pankratov1, 2

1Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia.

2Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia.




This paper considers an analytical approach for the prognosis of mass and heat transport during the growth of epitaxial layers by means of pulsed laser deposition. The approach provides the opportunity to make a prognosis which takes into account the spatial and temporal variations of their parameters and, at the same time, the nonlinearity of these processes. Based on this approach, the influence of the variation of several parameters on the growth process is investigated.

Cite as:

Pankratov, E.L. (2021). On the approach to the analysis of the growth of epitaxial layers by pulsed laser deposition. Computer Methods in Materials Science, 21(4), 203–208. https://doi.org/10.7494/cmms.2021.4.0768

Article (PDF):


Pulsed laser deposition, Mass and heat transport, Analytical modelling


Abe, K., Eryu, O., Nakashama, S., Terai, M., Kubo, M., Niraula, M., & Yasuda, K. (2005). Optical emission characteristics of ablation plasma plumes during the laser-etching process of CdTe. Journal of Electronic Materials, 34(11), 1428–1431.

Bonse, J., Wrobel, J.M., Krüger, J., & Kautek, W. (2001). Ultrashort-pulse laser ablation of indium phosphide in air. Applied Physics A, 72(1), 89–94.

Bonse, J., Wiggins, S.M., & Solis, J. (2005). Dynamics of phase transitions induced by femtosecond laser pulse irradiation of indium phosphide. Applied Physics A, 80(2), 243–248.

Borowiec, A., & Haugen, H.K. (2003). Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Applied Physics Letters, 82(25), 4462–4464.

Chelnokov, E.V., Bityurin, N., Ozerov, I., & Marine, W. (2006). Two-photon pumped random laser in nanocrystalline ZnO. Applied Physics Letters, 89(17), 171119.

Couillard, M., Borowiec, A., Haugen, H.K., Preston, J.S., Griswold, & E.M., Botton, G.A. (2007). Subsurface modifications in indium phosphide induced by single and multiple femtosecond laser pulses: A study on the formation of periodic ripples. Journal of Applied Physics, 101, 033519.

Ivanov, A., & Smirnov, B. (2012). Elektronno-luchevoyenapyleniye: tekhnologiya i oborudovaniye. Nanoindustriya, 6(36), 28–34 [Иванов, А., Смирнов, Б. (2012). Электронно-лучевое напыление: технология и оборудование. Наноиндустрия, 6(36), 28–34].

Nutsch, A., Dahlheimer, B., Döhr, N., Kratzer, H., Lukas, R., Torabi, B., Tränkle, G., Abstreiter, G., & Weimann, G. (1998). Chemical beam epitaxy of integrated 1.55 μm lasers on exact and misoriented (100)-InP substrates. Journal of Crystal Growth, 188(1–4), 275–280.

Shalimova, K.M. (1985). Sfizika poluprovodnikov, Energoetomizdat [Шалимова, К.М. (1985). SФизика полупроводников. Энергоэтомиздат].

Shen, W.P., & Kwok, H.S. (1994). Crystalline phases of II-VI compound semiconductors grown by pulsed laser deposition. Applied Physics Letters, 65(17), 2162–2164.

Sokolov, Yu.D. (1955). Pro vyznachennya dynamychnikh zusyl’ v shakhtnykh pidiymal’nykh kanatakh, Prykladna Mekhanika, 1(1), 23–35 [Соколов, Ю.Д. (1955). Про визначення динамичнiх зусиль в шахтних пiдiймальних канатах. Прикладна Механiка, 1(1), 23–35].

Zherikhin, A.N., Khudobenko, A.I., Willyams, R.T., Vilkinson, D., Ucer, K.B., Hiong, G., & Voronov, V.V. (2003). Laser deposition of ZnO films on silicon and sapphire substrates. Quantum Electronics, 33(11), 975–980.

Zhvavyi, S.P., & Zykov, G.L. (2006). Simulation of dynamics of phase transitions in CdTe by pulsed laser irradiation. Applied Surface Science, 253(2), 586–591.