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Abstract
This paper considers an analytical approach for the prognosis of mass and heat transport during the growth of epitaxial layers 
by means of pulsed laser deposition. The approach provides the opportunity to make a prognosis which takes into account the 
spatial and temporal variations of their parameters and, at the same time, the nonlinearity of these processes. Based on this 
approach, the influence of the variation of several parameters on the growth process is investigated.
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1. Introduction

One of the most promising modern methods for pro-
ducing epitaxial layers is pulsed laser deposition. 
This method provides the opportunity to grow spe-
cial materials (metals, carbides, etc.) on the surface 
of the considered parts, helping to restore geome-
try, increase surface strength and improve corrosion 
resistance, etc. (see Abe et al., 2005; Bonse et al., 
2001, 2005; Borowiec & Haugen 2003; Chelnokov et 
al., 2006; Couillard et al., 2007; Nutsch et al., 1998; 
Shen & Kwok, 1994; Zherikhin et al., 2003; Zhvavyi 
et al., 2006). This work considers mass and heat 
transfer in the reaction chamber during the growth 
of an epitaxial layer under pulsed laser deposition. 
An analytical approach to analyzing the considered 
processes was introduced, allowing their nonlineari-
ty and changes of parameters in space and time to be 
taken into account.

2. Method of solution

To solve the issue, mass and heat transfer in the direc-
tion perpendicular to the source of the material evapo-
rated during laser deposition is considered by the sec-
ond Fourier law:
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where r is the density of the evaporated material; cp is 
the specific heat at constant pressure; l(T) is the ther-
mal conductivity; p(x, t) is the power density of laser 
radiation; x and t are the current coordinate and time; 
T (x, t) is the heating temperature of the material. The 
temperature dependence of the thermal conductivity 
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coefficient in the desired temperature range can be ap-
proximated as follows: l(T) = lass{1 + m[Td/T(x, t)]j} 
(see, for example, Shalimova, 1985), lass is the asymp-
totic value of thermal conductivity at large values of 
temperature, Td is the Debye temperature, parame-
ters m and j were used for increasing of exactness of 
approximation of experimental data by the considered 
function; a(T)  =  l(T)/c(T) is the thermal diffusivity. 
The speed of movement of the evaporation boundary 
is determined by the flows Ji of particles evaporated 
from the surface:

 
u t Ji ii

( )� � � , where i means the 
material used during growth. The boundary and initial 
conditions are defined in the following form:
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where Tr is the equilibrium temperature equals room 
temperature; Qp is the heat of vaporization. 

The transfer of the growth components is de-
scribed by Fick’s second law in the following form:
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with boundary and initial conditions:

C(0, t) = C0,
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C(0, 0) = C0, C(x > 0, 0) = 0	�        
 (4)

where: C(x, t) – the concentration of vaporized material; 
DC – the diffusion coefficient of this material. 

Next, Equations (1) and (3) can be transformed to 
the following forms:
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Now Equations (5) and (6) are solved with the 
method of averaging functional corrections (see, for 
example, Sokolov, 1955). Within the framework of this 
method, one replaces the not yet known functions T(x, t) 

and C(x, t) by their unknown average values a1T and 
a1C in the right-hand sides of the considered equations. 
Then the equations for the first approximations of the 
desired functions T1(x, t) and C1(x, t) are obtained:
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The unknown average values of a1T and a1C are 
determined using standard relations (see, for example, 
Sokolov, 1955):
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where L is the distance between the source of growth 
material and the grown layer. 

Substitution Equations (7) into (8) and calculating 
of the appropriate integrals leads to relations for aver-
age values of a1T and a1C:
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The second-order approximations of the required 
functions T(x, t) and C(x, t) have been determined 
within the framework of the standard procedure (see, 
for example, Sokolov, 1955), i.e. by replacing these 
functions with the following sums: T(x, t) → a2T + 
T1(x, t) and C(x, t) → a2C + C1(x, t) on the right side 
of Equations (4), where a2T and a2C are the average 
values of the second-order approximations of the con-
sidered temperature T2(x, t) and concentration C2(x, t). 
Higher-order approximations are calculated in a simi-
lar fashion, with a corresponding increase in the sum-
mation indices indicating the order of approximation. 
The relations for the second-order approximations of 
the considered functions after the substitution take the 
following form:
�
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Calculation of the considered average values of 
the second-order approximations of the required func-
tions a2T and a2C is carried out using standard relations 
(see, for example, Sokolov, 1955):
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This leads to the following equations for the con-
sidered parameters:
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The average value of a2T depends on the value of 
the parameter j and is calculated with the account 

of available empirical data. In this paper, the spa-
tio-temporal distributions of the concentration of the 
growth component and temperature was carried out 
analytically by using the second-order approximation 
framework and the method of averaging functional 
corrections. The approximation is usually sufficient 
to make qualitative analysis and obtain some quan-
titative results. The results of analytical calculations 
were verified by comparing them with the results of 
direct numerical modelling. For the numerical simu-
lation of mass and heat transport, a direct solutions 
of Equations (1) and (3) with account appropriate 
boundary and initial conditions were used with an ex-
plicit difference scheme.

3. Discussion

The spatio-temporal distribution of the concentra-
tion of the growth component is considered as a case 
study. Figure 1 shows the dependence of the con-
centration of the growth component on equilibrium 
temperature. The increasing number of the curve 
corresponds to a decrease in the pulse power. In-
creasing pulse power leads to increasing the quanti-
ty of the material which should grow in the consid-
ered epitaxial layer. In this situation, the considered 
concentration of growth material increases. Figure 2 
shows the dependences of the concentration of the 
growth component on the density of the grown ma-
terial. Increasing number of curve corresponds to in-
creasing of the pulse continuance. Increasing pulse 
continuance corresponds to the increase of energy, 
which is the source of material growth. In this sit-
uation, a larger quantity of the material leaves the

Fig. 1. Distributions of the concentration of the growth component at different values of equilibrium temperature. Increasing 
of number of curve corresponds to decreasing pulse power. Solid lines are the calculated results. Points are the experimental 

results from references Ivanov & Smirnov, 2012; Zherikhin et al., 2003
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4. Conclusion

An analytical approach (based on the solution of 
partial differential equations) was developed for 
the prognosis of mass and heat transport during the 
growth of epitaxial layers under pulsed laser deposi-
tion. The approach provides the opportunity to make 

a considered prognosis with a spatial account and, at 
the same time, temporal variations of their parameters 
as well as the nonlinearity of the considered process. 
Based on the approach, the influence of the variation 
of several parameters on the growth process for the 
improvement of properties of epitaxial layers was  
disscused.

considered source at a fixed value of the growth 
chamber. In this situation, the considered concentra-
tion of growth material increases. Figure 3 shows the 
dependences of the concentration of the growth com-
ponent on the heat of the vaporization of the density 
of the material in the reaction chamber. Increasing 

the number of the curve corresponds to increasing 
the distance between the source of the growth mate-
rial and the growth layer. Increasing the considered 
distance at the fixed value of growth material corre-
sponds to decreasing the concentration of the consid-
ered material.
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Fig. 2. Distributions of the concentration of the growth component at different values of density of the growth material. Increasing 
of number of curve corresponds to increasing of the pulse continuance. Solid lines are the calculated results. Points are the 

experimental results from references Ivanov & Smirnov, 2012; Zherikhin et al., 2003
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Fig. 3. Distributions of the concentration of the growth component at different values of heat of vaporization of density of 
material in growth chamber. Increasing the number of the curve corresponds to increasing the distance between the source 
of the growth material and the growth layer. Solid lines are the calculated results. Points are the experimental results from 

references Ivanov & Smirnov, 2012; Zherikhin et al., 2003
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