Conversion of compression test data into flow curve, accounting for barrelling

Shahin Khoddam, Peter D. Hodgson

Deakin University, Institute for Frontier Materials, GTP Building, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.



Current solutions to convert the axis-symmetric compression test (ACT) data to flow data ignore the barrelling deformation in the sample. This work presents a solution for the test which accounts for the sample’s barrelling by discretising it into a finite number of layers of different radii. The solution assumes a constant and sliding friction at the anvil-sample interface. The sample’s flow behaviour is identified by combining a recent kinematic solution of the test, Prandtl–Reuss–Mises’s equations and a slab-analysis of the layers. It also involves an averaging of the effective plastic stresses developed in the individual layers. The solution is verified for a special case of no-barrelling which matches the currently used solution.

Cite as:

Khoddam, S., & Hodgson, P. D. (2021). Conversion of compression test data into flow curve, accounting for barrelling. Computer Methods in Materials Science, 21(3), 157-162.

Article (PDF):


Compression test, Flow curve identification, Barrelling induced shear, Multi-layer, Slab analysis


Avitzur, B. (1968). Metal forming. Processes and analysis. McGraw-Hill.

Beck, J.V., & Arnold, K.J. (1977). Parameter Estimation in Engineering and Science. John Wiley & Sons.

Fardi, M., Abraham, R., Hodgson, P.D., & Khoddam, S. (2017). A New Horizon for Barrelling Compression Test: Exponential Profile Modelling. Journal of Advanced Materials, 19(11), 1700328,

Guerrero, G.A., Granados, I.M., & Marrero J.M.C. (2012). Determination of the critical parameters for the onset of dynamic recrystallization (DRX) in advanced ultrahigh strength steels (A-UHSS) microalloyed with boron. Computer Methods in Materials Science, 12(3), 152–162.

Gzyl, M.Z., Sikora, K., Olejnik, L., Rosochowski, A., & Qarni, M.J. (2015). Determination of friction factor by ring compression testing and FE analysis. Computer Methods in Materials Science, 15(1), 156–161.

Khoddam, S. (2018). Deformation under combined compression and shear: a new kinematic solution. Journal of Materials Science, 54(6), 4754–4765.

Khoddam, S., & Hodgson, P.D. (2015). The need to revise the current methods to measure and assess static recrystallization behavior. Mechanics of Materials, 89, 85–97.

Khoddam, S., Hodgson, P.D. & Bahramabadi, M.J. (2011). An inverse thermal-mechanical analysis of the hot torsion test for calibrating the constitutive parameters. Materials & Design, 32(4), 1903–1909.

Khoddam, S., Solhjoo, S. & Hodgson, P.D. (2019). A power-based approach to assess the barrelling test’s weak solution. International Journal of Mechanical Sciences, 161–162, 105033.

Khoddam, S., Fardi, M. & Solhjoo, S. (2021). A verified solution of friction factor in compression test based on its sample’s shape changes. International Journal of Mechechanical Science, 193, 106175.

Madej, Ł., Mrozek, A., Kuś, W., Burczyński, T., & Pietrzyk, M. (2008). Concurrent and upscaling methods in multi scale modelling – case studies. Computer Methods in Materials Science, 8(1), 1–15.

Osakada, K. (2010). History of plasticity and metal forming analysis. Journal of Materials Processing Technology, 210(11), 1436–1454.

Petitprez, M., & Mocellin, K. (2013). Non standard samples behaviour law parameters determination by inverse analysis. Computer Methods in Materials Science, 13(1), 56–62.

Prandtl, L. (1924). Spannungsverteilung in plastischen Körpern. In Proceedigs of the first International Conference on Applied Mechanics, Delft University (pp. 43–54).

Rauch, L., Madej, L., Jurczyk, T., & Pietrzyk, M. (2007). Complex Modelling Platform based on Digital Material Representation.

In G. Loureiro & R. Curran (Eds.), Complex Systems Concurrent Engineering (pp. 403–410). Springer-Verlag London

Rauch, Ł., Skóra, M., Bzowski, K., & Pietrzyk M. (2017). Numerical model of cold deformation of TRIP steel. Computer Methods in Materials Science, 17(4), 207–217.

Reuss, A. (1930). Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 10(3), 266–274.

Rowe, G.W. (1979). Elements of metalworking theory. E. Arnold.

Sztangret, Ł., Sztangret, M., Kusiak, J. & Pietrzyk, M. (2014). Metamodel of the plane strain compression test as a replacement of FE model in the inverse analysis. Computer Methods in Materials Science, 14(4), 215–227.