The influence of material aging on the structural behavior of a flexible roof with a polymer membrane shell

Andrei V. Chesnokov, Vitalii V. Mikhailov, Ivan V. Dolmatov

The Faculty of Civil Engineering, Lipetsk State Technical University, Moskovskaya street 30, 398600 Lipetsk, Russian Federation.

DOI:

https://doi.org/10.7494/cmms.2021.1.0748

Abstract:

The roof structure considered in the research consists of continuous cables and a number of spreaders forming a three-dimensional frame. The frame is covered with a polymer membrane made of flexible architectural fabrics. The elements of the roof are compact and suitable for transportation to remote construction sites. The roof also has advantages for developing areas with harsh climatic conditions.
The flexible elements of the roof, however, only provide transmission of tensile forces. Under compression, cables slacken and the membrane becomes wrinkled. Pre-tension of the flexible elements, which is introduced to retain the operability of the roof, tends to gradually diminish due to material aging. The aging results in the alteration of strength properties and creep elongation of the structural elements. It induces membrane tearing on local areas.
Force alteration in primary structural members is examined in the present study, with statistical methods used for data analysis. They include significance hypothesis testing and correlation coefficients estimation. The data are obtained by the Finite Element simulation of the roof using EASY-2020 software.
The results of the work may be used for life expectancy assessment of flexible roof structures, providing important information for the preliminary design stage. The work contributes to the safety enhancement of cable-membrane structures and the expansion of their scope in permanent building constructions.

Cite as:

Chesnokov, A. V., Mikhailov, V. V., & Dolmatov, I. V. (2021). The influence of material aging on the structural behavior of a flexible roof with a polymer membrane shell. Computer Methods in Materials Science, 21(1),13–24 . https://doi.org/10.7494/cmms.2021.1.0748

Article (PDF):

Keywords:

Polymer membrane aging, Creep, Stress relaxation, Pre-stressed cable roof

References:

Asadi, H., Uhlemann, J., Stegmaier, T., Von Arnim, V., & Stranghöner, N. (2017). Investigations into the long-term behavior of fabrics. In K. Bletzinger, E. Oñate, & B. Kröplin (Eds.). VIII International Conference on Textile Composites and Inflatable Structures. Structural membranes 2017. 9–11 october 2017, Munich, Germany (pp. 217–228), International Center for Numerical Methods in Engineering (CIMNE). http://congress.cimne.com/membranes2017/frontal/Doc/Ebook2017.pdf.

Bridgens, B.N., Gosling, P.D., & Birchall, M.J.S. (2004). Tensile fabric structures: concepts, practice and developments. The Structural Engineer, 82(14), 21–27. https://www.istructe.org/journal/volumes/volume-82-(published-in-2004)/issue-14/tensile-fabric-structures-concepts,-practice-and-d/.

Chesnokov, A.V., & Mikhailov, V.V. (2017a). Cable roof structure with flexible fabric covering. In K. Bletzinger, E. Oñate, & B. Kröplin (Eds.). VIII International Conference on Textile Composites and Inflatable Structures. Structural membranes 9–11 october 2017, Munich, Germany (pp. 436–447), International Center for Numerical Methods in Engineering (CIMNE). http://congress.cimne.com/membranes2017/frontal/Doc/Ebook2017.pdf.

Chesnokov, A.V., & Mikhaylov, V.V. (2017b). Vantovaya konstruktsiya pokrytiya [Чесноков, А.В., & Михайлов, В.В. (2017b). Вантовая конструкция покрытия]. Utility model patent RU169612. https://www.fips.ru/registers-doc-view/fips_servlet?DB=RUPM&DocNumber=169612&TypeFile=html.

Chesnokov, A.V., Mikhaylov, V.V., & Dolmatov, I.V. (2018). Chislennyy algoritm opredeleniya zhestkostnykh parametrov i velichiny predvaritel’nogo napryazheniya vantovoy konstruktsii pokrytiya. Vestnik Volgogradskogo Gosudarstvennogoarkhitekturno-Stroitel’nogo Universiteta, 52(71), 61–70 [Чесноков, А.В., Михайлов, В.В., & Дол-матов, И.В. (2018). Численный алгоритм определения жесткостных параметров и величины предварительного напряжения вантовой конструкции покрытия. Вестник Волгоградского Государственного Архитектурно-Стро-ительного Университета, 52(71), 61–70]. https://vgasu.ru/upload/files/science/vestnik_52(71).pdf.

ETA-11/0160 (2018). European Technical Assessment. PFEIFER Wire Ropes. Annex C3. https://www.pfeifer.info/out/assets/PFEIFER_WIRE-ROPES_TECHNICAL-APPROVAL-ETA-11-0160_EN.PDF.

Fiúza, A.P.L. (2016). Polymeric membranes in architecture. Principles and applications in temporary and permanent structures. Master thesis. Técnico Lisboa.

Forster, B., & Mollaert, M. (2004). European Design Guide for Tensile Surface Structures. TensiNet.

Gosling, P.D., Bridgens, B.N., & Zhang, L. (2012). Adoption of a reliability approach for membrane structure analysis. Structural Safety, 40, 39–50. https://doi.org/10.1016/j.strusafe.2012.09.002.

Kupriyanov, V.N. (1986). Dolgovechnost’ tentovykh materialov: Nauchnyye printsipy i metodologii uskorennoy otsenki sroka sluzhby materialov v zadannykh usloviyakh ekspluatatsii. Dissertatsiya na soiskaniye uchënoy stepeni doktora tekhnicheskikh nauk. Kazanskiy Gosudarstvennyy Arkhitekturno-Stroitel’nyy Universitet, Kazan’, Rossiyskaya Federatsiya [Куприянов, В.Н. (1986). Долговечность тентовых материалов: Научные принципы и методологии ускоренной оценки срока службы материалов в заданных условиях эксплуатации. Диссертация на соискание учё-ной степени доктора технических наук. Казанский Государственный Архитектурно-Строительный Университет, Казань, Российская Федерация].

Monjo-Carrio, J. (2015). Understanding and overcoming failures associated with architectural fabric structures. In J.I. Llorens (Eds.). Fabric Structures in Architecture (pp. 241–256). Woodhead Publishing.
Mukhamedova, I.Z. (2005). Issledovaniye protsessov deformirovaniya i destruktsii armirovannykh polimerov. Dissertatsiya na soiskaniye uchënoy stepeni kandidata fiziko-matematicheskikh nauk. Kazanskiy Gosudarstvennyy Arkhitekturno-Atroitel’nyy Universitet, Kazan’, Rossiyskaya Federatsiya [Мухамедова, И.З. (2005). Исследование процессов де-формирования и деструкции армированных полимеров. Диссертация на соискание учёной степени кандидатафизико-математических наук. Казанский Государственный Архитектурно-Строительный Университет, Казань,Российская Федерация].

Rice, J.A. (2007). Mathematical Statistics and Data Analysis, 3rd ed., Thomson Learning.
Serge Ferrari Group (2021). Flexlight Advanced 1502 S2. https://www.sergeferrari.com/products/flexlight-range/flexlight-advanced-1502-s2.

Ströbel, D., Singer, P., & Holl, J. (2016). Analytical formfinding. International Journal of Space Structures, 31(1), 52–61.

Suleymanov, A.M. (2006). Eksperimental’no-teoreticheskiye osnovy prognozirovaniya i povysheniya dolgovechnosti materialov myagkikh obolochek stroitel’nogo naznacheniya. Dissertatsiya na soiskaniye uchënoy stepeni doktora tekhnicheskikh nauk. Kazanskiy Gosudarstvennyy Arkhitekturno-Atroitel’nyy Universitet, Kazan’, Rossiyskaya Federatsiya [Сулейманов, А.М. (2006). Экспериментально-теоретические основы прогнозирования и вышения долговечно-сти материалов мягких оболочек строительного назначения. Диссертация на оискание учёной степени доктора технических наук. Казанский Государственный Архитектурно-Строительный Университет, Казань, Российская Федерация].

Technet GmbH (2019). Easy. Lightweight structure design. https://www.technet-gmbh.com/fileadmin/user_upload/technet/Produktinformationen/Easy/Easy_ProductBrochure.pdf.

Tibert, G. (1999). Numerical analyses of cable roof structures. Licentiate Thesis. Royal Institute of Technology, Stockholm, Sweden. https://wiac.info/docgeneratev2?fileurl=https://dlscrib.com/downloadFile/59133df9dc0d60c824959f05&title=%5BPDF%5D+TibertLicThesis&utm_source=dlconvert&utm_medium=queue&utm_campaign=5a00b757e2b6f5ff768c494a.

Wang, C., Abdul-Rahman, H., Wood, L.C., Mohd-Rahim, F.A., Zainon, N., & Saputri, E. (2015). Defects of tensioned membrane structures (TMS) in the Tropics. Journal of Performance of Constructed Facilities, 29(2). https://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0000530.