Handling insensitivity in multi-physics inverse problems using a complex evolutionary strategy

Handling insensitivity in multi-physics inverse problems using a complex evolutionary strategy

Jakub Sawicki, Maciej Smołka, Marcin Łoś, Robert Schaefer

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.




In this paper we present a complex strategy for the solution of ill posed, in-verse problems formulated as multiobjective global optimization ones. The strategy is capable of identifying the shape of objective insensitivity regions around connected components of Pareto set. The goal is reached in two phases. In the first, global one, the connected components of the Pareto set are localized and separated in course of the multi-deme, hierarchic memetic strategy HMS. In the second, local phase, the random sample uniformly spread over each Pareto component and its close neighborhood is obtained in the specially profiled evolutionary process using multiwinner selection. Finally, each local sample forms a base for the local approximation of a dominance function. Insensitivity region surrounding each connected component of the Pareto set is estimated by a sufficiently low level set of this approximation. Capabilities of the whole procedure was verified using specially-designed two-criterion benchmarks.

Cite as:

Sawicki, J., Smołka, M., Łoś, M., & Schaefer, R. (2019). Handling insensitivity in multi-physics inverse problems using a complex evolutionary strategy. Computer Methods in Materials Science, 19(1), 2-11. https://doi.org/10.7494/cmms.2019.1.0625

Article (PDF):


Multi-objective optimization, Evolutionary algorithm, Inverse problem


Bertsimas, D., Brown, D.B., 2009, Constructing uncertainity sets for robust linear optimization, Operational research, 57, 1483-1495.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2), 82-197.

Duan, Q., Sorooshian, S., Gupta, V., 1992, Effective and effient global optimization for conceptual rainfall-runo models. Water Resource Research, 28, (4), 1015-1031.

Fonseca, C.M., Fleming, P.J., 1993, Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization, Proc. 5th Int. Conf. on Genetic Algorithms, vol. 93, San Mateo, 416-423.

Gajda-Zagórska, E., 2015, Adaptive population-based algo-rithms for solving single- and multiobjective inverse prob-lems, PhD thesis, AGH University of Science and Tech-nology, Kraków.

Gajda-Zagórska, E., Smołka, M., Schaefer, R., Pardo, D., Álva-rez-Aramberri, J., 2015, Multi-objective hierarchic memet-ic solver for inverse parametric problems, Procedia Com-puter Science, 51, 974-983.

Gajda-Zagórska, E., Schaefer, R., Smołka, M., Pardo, D., Álva-rez-Aramberri, J., 2017, Multi-objective memetic inverse solver reinforced by local optimization methods, Journal of Computational Science, 18, 85-94.

Gao, L., Calo, V.M., 2014, Fast isogeometric solvers for explicit dynamics, Computer Methods in Applied Mechanics and Engineering, 274, 19-41.

Gunawan, S., Azarm, S., 2005, Multi-objective robust optimiza-tion using a ensitivity region concept. Structural and Mul-tidisciplinary Optimization, 29 (1), 50-60.

Isshiki, M., Sinclair, D., Kaneko, S., 2006, Lens design: Global optimization of both performance and tolerance sensitivity, International Optical Design, page TuA5, Optical Society of America, 2006. doi: 10.1364/IODC.2006.TuA5, URL http://www.osapublishing.org/abstract.cfm?URI=IODC-2006-TuA5.

Jin, Y., 2005, A comprehensive survey of fitness approximation in evolutionary computation, Soft Computing, 9 (1), 53–59.

Jin, Y., Branke, J., 2005, Evolutionary optimization in uncertain environments – a survey, IEEE Transaction on Evolution-ary Computation, 9, 303-317.

Łoś, M., Sawicki, J., Smołka, M., Schaefer, R., 2017, Memetic approach for irremediable ill-conditioned parametric in-verse problems, Procedia Computer Science, 108C, 867-876.

Miettinen, K., 1999, Nonlinear multiobjective optimization, Kluwer Academic Publishers, Boston.
Paruch, M., Majchrzak, E., 2007, Identification of tumor region parameters using evolutionary algorithm and multiple reci-procity boundary element method, Engineering Applica-tions of Artificial Intelligence, 20 (5), 647-655.

Petrone, G., Axerio-Cilies, J., Quagliarella, D.,Iaccarino, G., 2013, A probabilistic non-dominated sorting ga for optimization under uncertainty, Engineering Computations, 30,

Sawicki, J., Łoś, M., Smołka, M., Schaefer, R., Julen Álvarez-Aramberri, J., 2018, Approximating landscape insensitivity regions in solving ill-conditioned inverse problems. Memetic Computing, doi: https://doi.org/10.1007/s12293-018-0258-5.

Smołka, M., 2015, Memetic strategies and autonomous systems for solving inverse problems, Dissertations and Monographs, AGH University of Science and Technology Press,
volume 311, Kraków.

Smołka, M., Gajda-Zagórska, E., Schaefer, R., Paszyński, M., Pardo, D., 2015a, A hybrid method for inversion of 3D AC logging measurements, Applied Soft Computing, 36, 422-

Smołka, M., Schaefer, R., Paszyński, M., Pardo, D., Álvarez-Aramberri, J., 2015b, An agent-oriented hierarchic strategy for solving inverse problems. International Journal of Applied
Mathematics and Computer Science, 25 (3), 483-498.

Tarantola, A., 2005, Inverse Problem Theory, Mathematics and its Applications, Society for Industrial and Applied Mathematics.

Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G., 1995, Numerical methods for the solution of illposed problems, Springer-Verlag.

Ursem, R.K., 1999, Multinational evolutionary algorithms, Proc. Congress on Evolutionary Computation CEC’99, vol. 3, IEEE.