Numerical analysis of damage during hot forming

Numerical analysis of damage during hot forming

Joanna Szyndler, Muhammad Imran, Muhammad Junaid Afzal, Markus Bambach

1Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 17, D-03046 Cottbus, Germany.

2AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.

DOI:

https://doi.org/10.7494/cmms.2018.3.0619

Abstract:

The main aim of the presented research is the analysis of damage evolution in 16MnCrS5 steelduring hot formingbased on results obtained from finite element modelling. Particular attention is put on the interaction between dynamic recrystallization (DRX) and damage initiation at the matrix-inclusion interface. Moreover, a modified Gurson-Tvergaard-Needleman (GTN) model is proposed with the nucleation criterion taken from an extended Horstemeyer model, which predicts damage nucleation based on material softening due to the DRX and stress state in the material.

Cite as:

Szyndler, J., Imran, M., Afzal, M., Bambach, M. (2018). Numerical analysis of damage during hot forming. Computer Methods in Materials Science, 18(3), 107 – 114. https://doi.org/10.7494/cmms.2018.3.0619

Article (PDF):

Keywords:

Damage, Dynamic recrystallization, Void nucleation, Numerical modelling

References:

Aşık, E.E., Perdahcıoğlu, E.S., van den Boogaard, A.H., 2019,Microscopic investigation of damage mechanisms and anisotropicevolution of damage in DP600, Materials Scienceand Engineering A, 739, 348-356.

Beynon, J.H., Sellars, C.M., 1992, Modelling microstructure andits effects during multipass hot rolling, ISIJ International,32, 3, 359-367.

Cheng, R., Zhang, J., Wang, B., 2017, Deformation behavior ofMnO13%-Al 2 O 3 18%-SiO 2 69% inclusion in differentsteels during hot rolling processes, Metallurgical ResearchTechnology, 114, 608.

Ervasti, E., Stahlberg, U., 2005, Void initiation close to a macroinclusionduring single pass reductions in the hot rolling ofsteel slabs: A numerical study, Journal of Materials ProcessingTechnology, 170, 1-2, 142-150.

Gurson, A.L., 1977, Continuum theory of ductile rupture byvoid nucleation and growth: part I – yield criteria and flowrules for porous ductile media, Journal of Engineering Materialsand Technology, 99, 1, 2-15.

Horstemeyer, M.F., Gokhale, A.M., 1999, A void-crack nucleationmodel for ductile metals, International Journal of Solidsand Structures, 36, 5029-5055.

Liu, Y., Zhu, Y., Oskay, C., Hu, P., Ying, L., Wang, D., 2018,Experimental and computational study of microstructuraleffect on ductile fracture of hot-forming materials, MaterialsScience & Engineering A, 724, 298-323.

Luo, C., 2001, Evolution of voids close to an inclusion in hotdeformation of metals, Computational Materials Science,21, 360-374.

Madej, Ł., Sitko, M., Pietrzyk, M., 2016, Perceptive comparisonof mean and full field dynamic recrystallization models,Archives of Civil and Mechanical Engineering, 16, 4, 569-589.

Malkiewicz, T., Rudnik, S., 1963, Deformation of non-metallicinclusions during rolling of steel, Journal of the Iron andSteel Institute, 201, 33-38.

Milenin, A., Pernach, M., Rauch, Ł., Kuziak, R., Zygmunt, T.,Pietrzyk, M., 2017, Modelling and optimization of themanufacturing chain for rails, Procedia Engineering, 207,2101-2106.

Muszka, K., Dziedzic, D., Madej, L., Majta, J., Hodgson, P.D.,Palmiere, E.J., 2014, The development of ultrafine-grainedhot rolling products using advanced thermomechanicalprocessing, Material Science & Engineering A, 610, 290-296.

Pietrzyk, M., Kuziak, R., 2012, Modelling phase transformationin steel, Woodhead Publishing Series in Metals and SurfaceEngineering, 145-179.

Requena, G., Maire, E., Leguen, C., Thuillier, S., 2014, Separationof nucleation and growth of voids during tensile deformationof dual phase steel using synchrotron microtomography,Materials Science & Engineering A, 589, 242-251.

Saby, M., Bouchard, P.-O., Bernacki, M., 2015, Void closurecriteria for hot metal forming: A review, Journal of ManufacturingProcesses, 19, 239-250.

Santos, R.O., Silveira, L.B., Moreira, L.P., Cardoso, M.C.,Silva, F.R.F., 2018, Damage identification parameters ofdual-phase 600-800 steels on experimental void analysisand finite element simulations, Journal of Materials Researchand Technology, in press.

Tang, J., Hu, W., Meng, Q., Sun, L., Zhan, Z., 2017, A noveltwo-scale damage model for fatigue damage analysis oftransition region between high- and low-cycle fatigue, InternationalJournal of Fatigue, 105, 208-218.

Tvergaard, V., Needleman, A., 1984, Analysis of the cup-conefracture in a round tensile bar, Acta Metallurgica, 32, 157-169.