The MLPG in gradient theory for size-dependent magnetoelectroelasticity

The MLPG in gradient theory for size-dependent magnetoelectroelasticity

Jan Sladek1, Vladimir Sladek1, Slavomir Hrcek2

1Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia.

2Faculty of Mechanical Engineering, University of Zilina, 01026 Zilina, Slovakia.



The strain gradient magnetoelectroelasticity is applied to solve two-dimensional boundary value problems. The electric and magnetic field-strain gradient coupling is considered in constitutive equations. The meshless local Petrov-Galerkin (MLPG) is developed to solve general problems. All field quantities are approximated by the moving least-squares (MLS) scheme. Effective material properties for a piezomagnetic matrix with regularly distributed piezoelectric fibres of a circular cross section and coating layer are presented.

Cite as:

Sladek, J., Sladek, V., Hrcek, S. (2017). The MLPG in gradient theory for size-dependent magnetoelectroelasticity. Computer Methods in Materials Science, 17(1), 76 – 82.

Article (PDF):


Meshless approximation, Local integral equations, MLS approximation, Effective material properties


Atluri, S.N., 2004, The Meshless Method (MLPG) for Domainand BIE Discretizations, Tech Science Press, Forsyth.

Bishay, P.L., Sladek, J., Sladek, V., Atluri, S.N. 2012, Analysisof functionally graded multiferroic composites using hybrid/mixed finite elements and node-wise material properties,CMC: Computers, Materials & Continua, 29,213-262.

Cross, L.E. 2006, Flexoelectric effects: charge separation ininsulating solids subjected to elastic strain gradients, J.Mater. Sci., 41, 53-63.

Hu, S.L., Shen, S.P. 2009, Electric field gradient theory withsurface effect for nano-dielectrics, CMC: Computers,Materials & Continua, 13, 63-87.

Ke, L. L., Wang, Y.S., Wang, Z.D. 2012, Nonlinear vibration ofthe piezoelectric nanobeams based on the nonlocal theory,Comp. Struct., 94, 2038-2047.

Kuo, H.Y., Wang, Y.L. 2012, Optimization of magnetoelectricityin multiferroic fibrous composites. Mechanics of Materials,50, 88-99.

Liang, X., Shen, S.P. 2013, Size-dependent piezoelectricity andelasticity due to the electric field-strain gradient couplingand strain gradient elasticity, Int. J. Appl. Mech., 5,1350015.

Liang, X., Hu, S., Shen, S. 2013, Bernoulli-Euler dielectricbeam model based on strain-gradient effect, J. Appl.Mech., 80, 044502-6.

Murmu, T., Pradhan, S.C. 2009, Thermo-mechanical vibrationof a single-walled carbon nanotube embedded in an elasticmedium based on nonlocal elasticity theory, Comput.Mater. Sci., 46, 854-859.

Pan, E., Chen, W. 2015, Static Green’s Functions in AnisotropicMedia, Cambridge University Press, New York.

Ryu, J., Priya, S., Uchino, K., Kim, H.E. 2002, Magnetoelectriceffect in composites of magnetostrictive andpiezoelectric materials, Jour. Electroceramics, 8, 107-119.

Sladek, J., Stanak, P., Han, Z.D., Sladek, V. Atluri, S.N., 2013,Applications of the MLPG method in engineering & sciences:A review, CMES-Computer Model. Engn. Sci.,92, 423-475.

Sladek, J., Sladek, V., Pan, E. 2016a, Effective properties ofcoated fiber-composites with piezoelectric andpiezomagnetic phases. Jour. Intell. Mater. Syst. Struct.,DOI: 10.1177/1045389X16644786.

Sladek, J., Sladek, V., Pan, E. 2016b, Effective properties ofcoated fiber-composites with piezoelectric andpiezomagnetic phases. Int. J. Solids Struct. DOI:10.1016/j.ijsolstr.2016.08.011 .

Tang, Z., Xu, Y., Li, G., Aluru, N.R. 2005, Physical models forcoupled electromechanical analysis of silicon nanoelectromechanicalsystems, J. Appl. Phys., 97, 114304.