Strategy for the selection of the best phase transformation model for simulation of metals processing

Strategy for the selection of the best phase transformation model for simulation of metals processing

Łukasz Rauch, Krzysztof Bzowski, Konrad Perzyński, Łukasz Madej, Andriy Milenin, Maciej Pietrzyk

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.



Connection of the finite element program with phase transformation models is often needed when prediction of distribution of phase composition in the product is of interest. Depending on the type of the phase transformation model this connection may involve long computing times. Moreover, when the optimization task has to be formulated and solved, the computing costs may radically increase. It is particularly troublesome when the objective function is composed of advanced microstructural parameters or product properties, evaluation of which requires an application of multiscale modelling techniques. In the present paper the possibilities of decreasing of the computing costs for optimization of metals processing were explored. Several case studies, which require connection of the FE code with phase transformation models, were analysed and computing times were compared. Efficiency of modelling depending on the complexity of the macro scale FE mesh was evaluated

Cite as:

Rauch, Ł., Bzowski, K., Perzyński, K., Madej, Ł., Milenin, A., Pietrzyk, M. (2016). Strategy for the selection of the best phase transformation model for simulation of metals processing. Computer Methods in Materials Science, 16(4), 224 – 237.

Article (PDF):


Modelling, Phase transformations, Computing costs, Materials processing


Aboauf, M., Chenot, J.-L., Marcelin, J.-L., 1983, A twodimensionalfinite-element idealization for thermo-elasticdeflection in beams, International Journal for NumericalMethods in Engineering, 19, 1453-1465.

Bachniak, D., Rauch, L., Król, D., Słota, R., Kitowski, J., Pietrzyk,M., 2016, Massively parallel approach to sensitivityanalysis on HPC architectures with Scalarm platform,Concurrency and Computation: Practice and Experience,Published online in Wiley Online Library ( DOI: 10.1002/cpe.4025.

Behrens, B.-A., Denkena, B., Charlin, F., Dannenberg, M., 2011,Model based optimization of forging process chains bythe use of a Genetic Algorithm, 10th Int. Conf. on Technologyof Plasticity ICTP, eds, Hirt, G., Tekkaya, A.E.,Aachen, 25.-30.

Halder, C., Madej, Ł., Pietrzyk, M., 2014, Discrete micro-scalecellular automata model for modelling phase transformationduring heating of dual phase steels, Archives ofCivil and Mechanical Engineering, 14, 96-103. 361.

Gołąb, R., Madej, Ł., Pietrzyk, M., 2014, The complex computersystem based on Cellular Automata method designed tosupport modelling of laminar cooling processes, Journalof Machine Engineering, 14, 63-73.

Król, D., Słota, R., Kitowski, J., Rauch, Ł., Bzowski, K., Pietrzyk,M., 2016, Model-based approach to study hot rolling millswith data farming, Proceedings of 30th European Conferenceon Modelling and Simulation, 2016, CD-ROM.Kuziak, R., Pietrzyk, M., 2011, Physical and numerical simulationof the manufacturing chain for the DP steel strips, SteelResearch International, special edition conf. ICTP, Aachen,756-761.

Kuziak, R., Zygmunt, T., 2013, A new method of rail head hardeningof standard gauge rails for improved wear and damageresistance, Steel Research International, 84, 13-19.

Leblond, J.B., Devaux, J., 1984, A new kinetic model for anisothermalmetallurgical transformations in steel includingeffect of austenite grain size, Acta Metallurgica, 32, 137-146.

Lee, C.H., Kobayashi, S., 1973, New solution to rigid plasticdeformation problems, ASME, Journal of Engineering forIndustry, 95, 865-873.

Lenard, J.G., Pietrzyk, M., Cser, L., 1999, Mathematical andphysical simulation of the properties of hot rolled products,Elsevier, Amsterdam.

Milenin, A., Pietrzyk, M., Kuziak, R., 2013, Mathematical modelof residual stresses in hot-rolled strips for laser cutting,Proc. Conf. ROLLING 2013, Venice, CD ROM.

Milenin, A., Rec, T., Walczyk, W., Pietrzyk, M., 2016a, Model ofcurvature of crankshaft blank during heat treatment, accountingfor phase transformations, Steel Research International,86, 519-528.

Milenin, A., Kuziak, R., Lech-Grega, M., Chochorowski, A.,Witek, S., Pietrzyk, M., 2016b, Numerical modeling andexperimental identification of residual stresses in hotrolledstrips, Archives of Civil and Mechanical Engineering,16, 125–134.

Milenin, I., Pernach, M., Pietrzyk, M., 2015, Application of thecontrol theory for modelling austenite-ferrite phase transformationin steels, Computer Methods in Materials Science,15, 327-335.

Pereira, H.A., Cupertino, A.F., Teodorescu, R., Silva, R.S., 2014,High performance reduced order models for wind turbineswith full-scale converters applied on grid interconnectionstudies, Energies, 7, 7694-7716.

Pernach, M., Pietrzyk, M., 2008, Numerical solution of the diffusionequation with moving boundary applied to modelingof the austenite-ferrite phase transformation, ComputationalMaterials Science, 44, 783-791.

Pernach, M., Bzowski, K., Pietrzyk, M., 2014, Numerical modellingof phase transformation in DP steel after hot rollingand laminar cooling, International Journal for MultiscaleComputational Engineering, 12, 397–410.

Pernach, M., 2014, Application of the diffusion equation to modelingphase transformation during cooling of pearliticsteel, Computer Methods in Materials Science, 14, 228-238.

Perzyński, K., Madej, Ł., Szajding, A., Raga, K., Kubiak, K.,Niechajowicz, A., Jaśkiewicz, K., Gronostajski, Z., Pietrzyk,M., 2016, Numerical model of heat treatment ofgear rings used in airplanes, Journal of Machine Engineering,18-26.

Pietrzyk, M., 2000, Finite element simulation of large plasticdeformation, Journal of Materials Processing Technology,106, 223-229.

Pietrzyk, M., Madej, Ł., Węglarczyk, S., 2008, Tool for optimaldesign of manufacturing chain based on metal forming,Annals of the CIRP, 57, 309-312.

Pietrzyk, M., Kuziak, R., 2012, Modelling phase transformationsin steel, Microstructure evolution in metal forming processes,eds, Lin, J., Balint, D., Pietrzyk, M., WoodheadPublishing, Oxford, 145-179.

Pietrzyk, M., Kusiak, J., Kuziak, R., Madej, Ł., Szeliga, D.,Gołąb, R., 2014, Conventional and multiscale modellingof microstructure evolution during laminar cooling of DPsteel strips, Metallurgical and Materials Transactions B,46B, 497-506.

Pietrzyk, M., Madej, Ł., Rauch, Ł., Szeliga, D., 2015, ComputationalMaterials Engineering: Achieving high accuracyand efficiency in metals processing simulations, Elsevier,Amsterdam.

Pietrzyk, M., Kusiak, J., Szeliga, D., Rauch, Ł., Sztangret, Ł.,Górecki, G., 2016, Application of Metamodels to Identificationof Metallic Materials Models, Advances in MaterialsScience and Engineering, DOI:doi:10.1155/2016/2357534.

Quarteroni, A., Rozza, G., (eds), 2014, Reduced order methods formodeling and computational reduction, Springer.Rauch, Ł., Kuziak, R., Pietrzyk, M., 2014, From high accuracy tohigh efficiency in simulations of processing of Dual-Phasesteels, Metallurgical and Materials Transactions B, 45B,497-506.

Schroeder, J., Balzani, D., Brands, D., 2011, Approximation ofrandom microstructures by periodic statistically similarrepresentative volume elements based on lineal-path functions,Archives of Applied Mechanics, 81, 975-997.

Sellars, C. M., 1980, The Physical Metallurgy of Hot Working,Hot Working and Forming Processes, Hot Working andForming Processes, (eds), Sellars, C.M., Davies, G.J., TheMetals Soc., London, 3-15.

Skóra, M., Pietrzyk, M., 2014, Proper assembly and geometricalparameters as a criterion for the computer aided design of manufacturing cycle for screws, Computer Methods inMaterials Science, 14, 75-85.

Szeliga, D., Kuziak, R., Kopp, R., Smyk, G., Pietrzyk, M., 2015,Accounting for the inhomogeneity of deformation in identificationof microstructure evolution model, Archives ofMetallurgy and Materials, 60, 3087-3094.

Sztangret, Ł., Milenin, A., Sztangret, M., Walczyk, W., Pietrzyk,M., Kusiak, J., 2011, Computer aided design of the bestTR forging technology for crank shafts, Computer Methodsin Materials Science, 11, 237-242.

Wang, X., Yang, Q., He, A., 2008, Calculation of thermal stressaffecting strip flatness change during run-out table coolingin hot steel strip rolling, Journal of Materials ProcessingTechnology, 207, 130–146.

Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z., 2005, The finite elementmethod: its basis and fun-damentals, Elsevier Butterworth-Heinemann.