GPU implementation of Kampmann-Wagner numerical precipitation models

GPU implementation of Kampmann-Wagner numerical precipitation models

Øyvind Jensen1, Henrik Lam2, Hallvard Fjær1

1Institute for Energy Technology, N-2027 Kjeller, Norway.

2Impetus AFEA, SE-14160 Huddinge, Sweden.



A Kampmann-Wagner type numerical precipitation model (KWN) has been implemented using NVIDIA’s CUDA framework for numerical programming of the graphics processing unit (GPU). Different implementation strategies are discussed and subjected to performance When the KWN model is used in combination with other calculations that are processed by the CPU, the performance improvements can be such that the KWN model incurs only emph{negligible} additional execution time. Also if the KWN model is used standalone for a large case, the GPU implementation achieves good scalability and performance.measurements. We study two representative cases corresponding to a large and a small workload. The model is found to be well suited for a GPU implementation, provided that there is enough work to keep the device busy and the right parallelization strategy is chosen. For our hardware, we recommend a minimum work load of more than $2^{16}$ histogram bins (as the total of multiple histograms) which corresponds to 146 histogram bins per GPU core.

Cite as:

Jensen, Ø., Lam, H., Fjær, H. (2016). GPU implementation of Kampmann-Wagner numerical precipitation models. Computer Methods in Materials Science, 16(3), 127 – 138.

Article (PDF):


GPU, Precipitation, Numerical modelling, KWN-model


Bahrami, A., Miroux, A., Sietsma, J., 2012, An age-hardeningmodel for Al-Mg-Si alloys considering needle-shapedprecipitates, Metallurgical and Materials TransactionsA, 43, 4445-4453.

Chang, L.-W., Stratton, J. A., Kim, H.-S., Hwu, W.-M. W.,2012, A scalable, numerically stable, high-performancetridiagonal solver using GPUs, Proceedings of the InternationalConference on High Performance Computing,Networking, Storage and Analysis, Los Alamitos, CA,USA, 27:1-27:11.

Fazeli, F., Sinclair, C. W., Bastow, T., 2008, The role of excessvacancies on precipitation kinetics in an Al-Mg-Sc alloy,Metallurgical and Materials Transactions A, 39, 2297-2305.

Fjær, H. G., Myhr, O. R., Klokkehaug, S., Holm, E. J., 2001,Advances in aluminum weld simulations applyingWeldSim, Proceedings of the 11th Intl. Conf. on ComputerTechnology in Welding, eds, Siewert, T. A., Pollock,C., Washington, 251-263.

Öhlund, C. E. I. C., den Ouden, D., Weidow, J., Thuvander, M.,Offerman, S. E., 2015, Modelling the evolution of multiplehardening mechanisms during tempering of Fe–C–Mn–Ti martensite, ISIJ International, 55, 884-893.

Öhlund, C. E. I. C., Weidow, J., Thuvander, M., Offerman,S. E., 2014, Effect of Ti on evolution of microstructureand hardness of martensitic Fe-C-Mn steel during tempering,ISIJ International, 54, 2890-2899.

Khan, I. N., Starink, M. J., Yan, J. L., 2008, A model for precipitationkinetics and strengthening in Al–Cu–Mg alloys,Materials Science and Engineering: A, 472, 66-74.

Myhr, O. R., Grong, Ø., 2000, Modelling of non-isothermaltransformations in alloys containing a particle distribution,Acta Materialia, 48, 1605-1615.

Myhr, O. R., Grong, Ø., Andersen, S. J., 2001, Modelling of theage hardening behaviour of Al-Mg-Si alloys, Acta Materialia,49, 65-75.

Myhr, O. R., Grong, Ø., Klokkehaug, S., Fjær, H. G., 2002,Modelling of the microstructure and strength evolutionduring ageing and welding of Al-Mg-Si alloys, MathematicalModelling of Weld Phenomena 6, ed, Cerjak, H.,Graz, Austria, 337-364.

Myhr, O. R., Klokkehaug, S., Grong, Ø., Fjær, H. G., Kluken,A. O., 1998, Modeling of microstructure evolution, residualstresses and distortions in 6082-T6 aluminumweldments, Welding Journal, 77, 286S-292S.

Nicolas, M., Deschamps, A., 2003, Characterisation and modellingof precipitate evolution in an Al-Zn-Mg alloy duringnon-isothermal heat treatments, Acta Materialia, 51,6077-6094.

Den Ouden, D., Zhao, L., Vuik, C., Sietsma, J., Vermolen, F. J.,2013, Modelling precipitate nucleation and growth withmultiple precipitate species under isothermal conditions:Formulation and analysis, Computational Materials Science,79, 933-943.

NVIDIA Corporation, 2015, The API reference guide for cuSPARSE,DU-06709-001_v7.5.Patankar, S., 1980, Numerical Heat Transfer and Fluid Flow,Hemisphere Publ., Washington.Perez, M., 2005, Gibbs-Thomson effects in phase transformations,Scripta Materialia, 52, 709-712.

Robson, J. D., Jones, M. J., Prangnell, P. B., 2003, Extension ofthe N-model to predict competing homogeneous andheterogeneous precipitation in Al-Sc alloys, Acta Materialia,51, 1453-1468.

Simar, A., Bréchet, Y., de Meester, B., Denquin, A., Gallais, C.,Pardoen, T., 2012, Integrated modeling of friction stirwelding of 6xxx series Al alloys: Process, microstructureand properties, Progress In Materials Science, 57,95-183.

Simar, A., Bréchet, Y., de Meester, B., Denquin, A., Pardoen,T., 2007, Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of analuminum alloy 6005A-T6, Acta Materialia, 55, 6133-6143.

Wagner, R., Kampmann, R., 1991, Homogeneous second-phaseprecipitation, Materials Science and Technology: PhaseTransformations in Materials, eds, Cahn, R. W., Haasen,P., Kramer, E. J., VCH, Weinheim, 213-302.

Wu, L., Ferguson, W. G., 2009, Modelling of precipitationhardening in casting aluminium alloys, Materials ScienceForum, 618-619, 203-206.

Yang, J., Enomoto, M., 2005, Numerical simulation of copperprecipitation during aging in deformed Fe-Cu alloys,ISIJ International, 45, 1335-1344.

Zhang, Y., Cohen, J., Owens, J. D., 2010, Fast tridiagonal solverson the GPU, SIGPLAN Not., 45, 127-136.