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Abstract 
 

A Kampmann-Wagner type numerical precipitation model (KWN) has been implemented using NVIDIA’s CUDA 
framework for numerical programming of the graphics processing unit (GPU). Different implementation strategies are 
discussed and subjected to performance measurements. We study two representative cases corresponding to a large and 
a small workload. The model is found to be well suited for a GPU implementation, provided that there is enough work to 
keep the device busy and the right parallelization strategy is chosen. For our hardware, we recommend a minimum work 
load of more than 2  histogram bins (as the total of multiple histograms) which corresponds to 146 histogram bins per 
GPU core. When the KWN model is used in combination with other calculations that are processed by the CPU, the per-
formance improvements can be such that the KWN model incurs only negligible additional execution time. Also if the 
KWN model is used standalone for a large case, the GPU implementation achieves good scalability and performance. 
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1. INTRODUCTION 

This paper addresses the use of a computer’s 
graphical processing unit (GPU) for efficient com-
puter implementations of precipitation models that 
are based on Kampmann and Wagner’s N-model 
(KWN) for diffusion controlled growth (Wagner & 
Kampmann, 1991). Using the CUDA-framework of 
NVIDIA, we implemented a GPU version of the 
KWN model for our simulation software, WeldSim 
(Myhr et al., 1998; Fjær et al., 2001; Myhr et al., 
2002). A typical thermo-mechanical simulation of 
the heat treatment of aluminium parts, will often 
take several days using our optimized OpenMP im-
plementation of the KWN model. By delegating the 
KWN model to the GPU, we experienced a four-fold 
speed up compared to the OpenMP implementation 
running with 4 threads. In this paper we describe 
how we achieved this speedup, and analyze the 

KWN model from the perspective of GPU-
programming. 

The KWN approach keeps track of the size dis-
tribution as well as the total number density of pre-
cipitates in the alloy. The model accounts for im-
portant features of age hardening materials, such as 
the dependence on the thermal history as well as the 
consumption of alloying elements that are stored in 
the precipitates during growth and released by dissi-
pation. By specification of the relevant nucleation 
and growth kinetics, the model can, in principle, be 
used with any alloy that has some kind of precipi-
tate. From the particle size distribution one derives 
macroscopic material properties of the material. 

KWN-type models have been used successfully 
to model a wide range of age hardening materials. 
Of the aluminium alloys, the 6000 series (Myhr 
et al., 2002; Simar et al., 2007; Bahrami et al., 2012; 
Wu & Ferguson, 2009), the 7000 series (Nicolas & 
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Deschamps, 2003), and the 2000 series (Khan et al., 
2008), as well as Al-Sc (Robson et al., 2003) and Al-
Mg-Sc alloys (Fazeli et al., 2008) have been studied. 
Applications have also been reported for iron alloys, 
such as Fe-Cu (Yang & Enomoto, 2005), Fe-C-Mn 
(Öhlund et al., 2014) and Fe–C–Mn–Ti (Öhlund 
et al., 2015). Material specific characteristics of the 
growth mechanism can easily be added, such as the 
effect of excess vacancies on the diffusivity studied 
by Fazeli et al. (2008). The approach has also been 
adapted for multiple metastable phases and multiple 
alloy elements by den Ouden et al. (2013). 

This paper is structured as follows: In section 2 
we briefly outline the characteristics of Kampmann-
Wagner type precipitation models with a focus on 
the computational structure. Section 3 provides a 
brief background for readers that are not familiar 
with GPU-programming, and in section 4, we 
analyze the KWN model and present strategies for 
an efficient parallelization. The numerical 
experiments are described in Section 5, and the 
performance results are presented and discussed in 
section 6. 

2. THE SIZE CLASS APPROACH TO 
PRECIPITATION MODELING 

Because we will analyze the KWN-type models 
from the perspective of parallel computations, it is 
useful to describe the central framework common to 
KWN-type precipitation models. We focus on the 
computational aspects, and do not aim to provide a 
description of the physics. On the contrary, we try to 
avoid material- and process-specific details and refer 
the interested reader to the relevant literature. 
(Wagner & Kampmann, 1991; Simar et al., 2012; 
Myhr & Grong, 2000; Myhr et al., 2001). 

The central idea to KWN-type precipitation 
models is to keep track of a size distribution of 
precipitates in an alloy. The time evolution of this 
size distribution is calculated using assumptions 
about the stoichiometry of the precipitates, as well as 
thermodynamic properties and diffusion kinetics. 
The specific particle size distribution is then used to 
estimate macroscopic properties of the material, 
such as the yield stress, the hardness value (HV), 
and the work hardening rate. 

 
2.1. The particle size distribution 

 
If 0 denotes a characteristic size, the 

distribution 0 denotes the number density 
per volume and size unit of precipitates of that size. 

The total number of precipitates per volume at a 
material point is then 

  . (1) 

For spherical particles  corresponds to the 
radius, but other interpretations are possible. The 
mean size of the precipitates is given by the 
statistical expectation value:  

  . (2) 

Other quantities, such as the total precipitate-
matrix interface area or the volume fraction of the 
secondary phase, are readily calculated. For 
example, the volume fraction of precipitates is given 
by  

  . (3) 

Here,  expresses the volume of a precipitate 
of size , so that for spherical precipitates one would 
use 4 /3. 

When some amount of solute element i is tied up 
in the precipitated phase, the remaining 
concentration in solid solution, , is reduced 
according to the expression:  

  . (4) 

Here,  denotes the initial solute concentration 
in the matrix, and  is the concentration of solute i 
in the precipitate. In the following, we will drop the 
superscript (i) for aesthetic reasons, but urge the 
reader to keep in mind that the formalism is not 
restricted to alloys with only a single solute element. 

The relations (1) – (4) all provide points of 
contact between the microscopic KWN-model and 
some macroscopic model. Information is aggregated 
from the precipitation model and made available as 
macroscopic quantities. Communication in the other 
direction is implemented in the equations that 
govern the time evolution of the particle size 
distribution. 

 
2.2. Time evolution 

 
As the precipitates grow or shrink, the number of 

particles is conserved, except for the particles that 
are dissolved at  or nucleated slightly above 
a critical radius ∗. This is expressed with the 
number conserving equation,  

  ,    . (5) 
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Here, ,  is the nucleation rate, and ,  is the growth rate of precipitates of size 
r. The product  represents the flux of particles 
along the axis , so that |  would be the num-
ber of particles that pass through an imaginary 
boundary at ′ per unit of time. The source term, , is 
typically calculated using classical nucleation theo-
ry, and depends (at least) on the temperature T and 
the level of supersaturation of solute elements as 
macroscopic input parameters. 

Let  denote the growth rate for particles of 
size  at a given time. In classical KWN approaches, 
we assume that the precipitate growth is limited by 
the diffusion of a particular solute element, and the 
instantaneous growth rate can be calculated as  

  . (6) 

Here, all quantities refer to the growth limiting 
solute element: D is the diffusion constant, and  
is the concentration at the particle/matrix interface. 
We note that since , the sign of  depends 

only on the difference . 
In general,  must be determined from the 

Gibbs-Thomson equation (GT), which states how 
the solubility limit of the solute element at the parti-
cle/matrix boundary depends on the curvature of the 
particle. Although other approximations may some-
times be preferable (den Ouden et al., 2013; Perez, 
2005), the GT correction for spherical particles in a 
binary or quasi-binary alloy is often expressed in the 
form  

 exp  . (7) 

Here,  encapsulates information about the so-
lute, the solvent and the temperature. The planar 
equilibrium concentration (for ∞) is denoted by 

. Returning focus to equation (6), we see that for 
small enough , the growth rate will be negative 
because of the GT-effect. The size for which a pre-
cipitate neither grows nor shrinks, is precisely the 
critical radius ∗. 

 
2.3. Discretization of the number conservation 

equation 
 
The discretized form of the particle size distribu-

tion is a histogram. By partitioning the r-axis into 
several intervals we can define the number density 
of each “size class” i by,  

 
//  . (8) 

The height of the histogram bars is / , 
where  is the width of size class i. 

A computationally efficient and numerically ro-
bust implementation of the KWN model was pre-
sented by Myhr and Grong (2000). They considered 
the size classes as control volumes, and solved the 
number conservation equation 5 for each control 
volume. All control volumes were coupled with the 
neighboring control volumes, corresponding to 
slightly larger/smaller precipitate sizes. This results 
in a tridiagonal system of equations. Numerical ro-
bustness and accuracy was achieved with an upwind 
scheme (Patankar, 1980), which adapts the numeri-
cal operations dynamically to the direction of infor-
mation in the running simulation. Specifically, the 
sign of the growth rate determines if the equation for 
a particular size class include terms that depend on 
the neighboring size class, or if it is the other way 
around. The procedure is described thoroughly by 
Myhr and Grong (2000). 

3. CHARACTERISTICS OF GPU 
PROGRAMMING 

For readers that are unfamiliar with GPU pro-
gramming, we provide a brief introduction to some 
of the central concepts. The reason that the GPU can 
outperform a contemporary CPU for certain compu-
tational workloads, is that the hardware is structured 
differently. A traditional CPU usually have a few 
cores, that can launch threads that are good at all-
round instructions. These threads run fast, but due to 
the low number of cores, the speedup gained by 
using multiple threads is limited. Conversely, a GPU 
can have thousands of cores that launch light-weight 
threads. These threads are not as fast as the CPU 
counterpart, but they provide efficient parallelization 
by weight of numbers. 

In order to utilize the GPU efficiently, the pro-
grammer needs to explicitly organize data into dif-
ferent categories of memory, and use each type of 
memory hardware in ways that benefit from the 
memory characteristics. In increasing order of speed, 
and decreasing order of capacity, the main memory 
categories are: global memory, shared memory, and 
on-chip registers. Threads running on the GPU are 
grouped into blocks that execute independently from 
each other. The threads within a block run logically 
in parallel, and are able to synchronize, and to com-
municate efficiently via shared memory. Of all 
threads in a block, batches of 32 threads (a warp) 
will execute physically in parallel. 
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The GPU contains several Streaming Multipro-
cessors (SM) that execute blocks from a job queue. 
Depending on the implemented algorithm, the code 
that runs on the GPU may need a low or a high 
number of on-chip registers for each thread. Hence, 
the amount of register memory of each SM will of-
ten limit the maximum number of threads in a block. 
The NVIDIA GPU architecture is based on the Sin-
gle Instruction, Multiple Thread (SIMT) execution 
model. The advantage of SIMT is its capability to 
circumvent memory-access latency. Writing and 
reading from global memory can be costly and 
SIMT can hide the latency by letting the SM quickly 
switch to another block. However, SIMT cannot 
handle divergent branches within warps, and must 
resort to serialized execution of the different branch-
es. 

The efficiency of memory transfer to/from glob-
al memory depends strongly on the memory access 
pattern. To achieve good performance it may be 
necessary to organize data in a certain way. The 
fastest memory transfer to/from global memory is 
achieved when consecutive threads access consecu-
tive memory locations (coalesced access). For over-
all performance, it is important to balance the time 
spent reading or writing to global memory with the 
time spent on calculations. 

Finally, we mention that GPU hardware has 
evolved rapidly. Newer graphics cards have more 
functionality than older cards, and the relative per-
formance of specific operations differ. The CUDA 
programmer can account for this by querying the 
Compute Capability (CC) of the installed GPU, and 
execute code that is optimized for the detected CC. 

4. STRATEGIES FOR PARALLELIZATION 

If the KWN precipitation model is used together 
with a macroscopic model, there may be an immedi-
ate, high level parallelization in that the CPU and the 
GPU can run simultaneously. This is only possible if 
the macroscopic model and the KWN model are 
coupled unidirectionally, that is, if only one of the 
models require input from the other. This is an im-
portant factor behind the four-fold speed improve-
ment we experienced for our software, WeldSim. 

In the thermo-mechanical welding calculations, 
the KWN model requires input from the thermal 
calculation, but the output from the KWN-model is 
only needed for the mechanical time steps. Since the 
mechanical time step can be set much larger than the 
thermal time step in most welding simulations, 

Δ . ≪ Δ ., it is only occasionally that the 
CPU needs to wait for output from the GPU. If also 
the computations on the GPU are fast enough to 
complete before the CPU has finished processing the 
next macroscopic time step, there will be only negli-
gible additional execution time for a simulation with 
or without the KWN micro structure model. How-
ever, to achieve this level of performance in practi-
cal applications, it was necessary to carefully opti-
mize the KWN model for the GPU. 

If the KWN model is used to simulate the local 
micro structure at several locations on a macroscopic 
geometry, for example at each of the nodes of a fi-
nite element mesh, the precipitation at one position 
does not depend on the particle distributions else-
where. This provides a straightforward path to par-
allelization, by simply running one separate instance 
of the KWN model for each node. 

Parallelizing with OpenMP or MPI, we might 
expect good performance and scalability by this 
approach. However, for a GPU-implementation, this 
simple parallelization scheme does not work opti-
mally, because of the limited resources available for 
each thread on GPU hardware. Fortunately, the 
KWN-type precipitation models are suitable for 
parallelization along several axes. 

The time spent on the KWN-type precipitation 
model can be divided into a number of phases:  
1. Nucleation and calculation of aggregate values 

that are necessary to determine the evolution of  
(preprocessing and postprocessing). 

2. Setup of the tridiagonal matrix.  
3. Solution of the tridiagonal system of equations. 

All three phases are characterized by a computa-
tional complexity that scales linearly with the num-
ber of size classes and with the number of nodes. In 
our optimized OpenMP implementation (WeldSim), 
most of the execution time is spent in the phases 2 
and 3. In phase 1 the time consuming task is the 
evaluation of integrals like equation 3. In phase 2 
much computational resources are spent on the cal-
culation of logarithms and exponential functions in 
order to determine the growth rate for each of the 
size classes. Phase 3 is solved using the Tri-Diago-
nal Matrix Algorithm (TDMA), which solves 
a three-diagonal system of equations by direct 
Gaussian elimination in two sweeps over the rows. It 
involves only elementary arithmetic operations on 
an array of floating point values. 

Note that the aggregation phase could have been 
split up into pre- and post-processing phases, and 
this is how it is organized in our code. However, as 
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the pre- and post- calculations are very similar, we 
have chosen to simplify the description by combin-
ing the pre- and post-processing phases into a single 
aggregation phase. In the performance measure-
ments, the aggregation phase is represented only by 
the preprocessing calculations. 

The histograms and the equation systems must 
be stored in global memory on the GPU, but there is 
no need to copy this data back and forth to the host 
RAM during the simulation. The largest data trans-
fers between the host computer and the device in 
each timestep are the small set of local input param-
eters and the aggregated output values for each node. 
Because of this, the time spent on data transfer be-
tween GPU and host RAM is negligible compared to 
the time spent processing the histograms. 

Each phase of the KWN model is implemented 
in a separate kernel (function that execute on the 
GPU). We will now discuss to what extent the phas-
es are suitable for parallelization on GPU hardware. 
The discussion will lead to a number of kernels that 
comprise three different parallelization strategies. 
Table 1 gives an overview of the strategies and the 
associated kernels. In section 5 these kernels will be 
used to measure and compare the performance of the 
parallelization strategies. 

 

Table 1. Overview of the kernels that implement the KWN phas-
es for each of the parallelization strategies 

 
4.1. The aggregation phase 

 
The aggregation phase, which is represented by 

the preprocess kernel, consists essentially of ele-
mentary mathematical operations applied to consec-
utive memory arrays. In our OpenMP implementa-
tion, this does not take a significant portion of time. 
We implemented only the naive, node-based paral-
lelization for this kernel, and we found that it was 
good enough for the needs of WeldSim. However, 
we don’t expect very good performance of the pre-
process kernel for cases with few nodes. On the oth-
er hand, the performance of the preprocess kernel 
relative to the other kernels provides useful insight 
on the merits of the naive parallelization scheme. 

The same kernel is used in all parallelization strate-
gies. 

For readers with a particular interest in cases 
with only a few simultaneous KWN models, we 
point out that a parallelized extraction of aggregate 
values from the particle size distribution can make 
use of well established parallel computing patterns. 
For example, the calculation of the total particle 
volume, equation 3, is readily formulated as a par-
allel transform-reduce operation acting on the parti-
cle size distribution histogram. As long as the histo-
grams are large enough, we expect a high perfor-
mance from such a GPU implementation. 

 
4.2.  Setup of the tri-diagonal equation system 

 
To define the equation system we must compute 

all coefficients of the tridiagonal matrix for each of 
the size classes and for each geometric node. This 
includes multiple independent evaluations of the 
growth rate as given by equations 6 and 7. To in-
crease parallelism, we let each thread compute the 
coefficients for a single row in the matrix associated 
with a single mesh node. 

Including the right hand side, each row of the 
tridiagonal equation system has four values, which 
fits into the structs float4 or double4 that are built-in 
language extensions in CUDA. The use of these 
types may result in faster memory transfer, com-
pared to four separate float/double variables, due to 
the use of vectorized load/store instructions. 

The calculation of coefficients for the equation 
system depends on values that are node specific, 
such as the concentration in solid solution and the 
local temperature. We reduce the number of load 
operations from global memory by letting several 
threads in a block compute coefficients for the same 
geometric node. The input values can then be loaded 
from global memory by a single thread, and made 
available to the block via shared memory. For 
NVIDIA devices with CC ≥ 2.0, reads from the 
same address in shared memory are broadcasted 
efficiently to all threads in the warp. This organiza-
tion of work implies that consecutive threads will set 
up consecutive rows in the system of equations. 

The phases 2 and 3 are tightly coupled, as the 
former creates the input to the latter. Since perfor-
mance may depend strongly on the memory access 
pattern, the efficiency of one may come with the 
cost of a reduced efficiency of the other. It is there-
fore important to consider the performance of the 
two phases together. We investigated three different 

Phase Node First Class First cuSparse 

1 preprocess preprocess preprocess 

2 setupNodeFirst setupClassFirst setupCuSparse 

3 solveNodeFirst solveClassFirst
cusparseSgtsvStrided

Batch 
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kernels for the setup phase, and the differences be-
tween them will be clarified in the following sec-
tions. 

 
4.3. Solution of the tridiagonal equation system 

 
A sophisticated parallel algorithm for tridiagonal 

systems of equations is implemented in the cuSparse 
library. (Chang et al., 2012; Zhang et al., 2010) This 
solver is very fast, but requires significant amounts 
of temporary storage (NVIDIA Corporation, 2015). 
In comparison, the TDMA is unsuitable for a paral-
lel implementation because the operations in one 
iteration depend on results from the previous itera-
tion. On the other hand, TDMA does not require 
much working space memory. Moreover, for cases 
with a large number of geometric nodes, it is possi-
ble that the naive parallelization scheme applied to 
the TDMA can utilize the GPU sufficiently well, and 
thus achieve good performance. 

In this work, we chose to investigate the cuS-
parse tridiagonal solver as well as two different im-
plementations of the TDMA. Both TDMA kernels 
use, by necessity, the naive parallelization scheme 
where each thread applies the TDMA algorithm for 
a specific geometric node. This organization of work 
implies that consecutive threads will access rows of 
the equation system for consecutive geometry nodes. 

Fig. 1. Alternatives for the memory layout of the equation sys-
tem. As depicted, the rows of the matrices can be associated 
with the size classes of the histograms. 

4.4.  Memory layout 
 
To maximize the overall performance of the 

equation setup and the TDMA, two ways to organize 
the equation system data as a two-dimensional array 
was tested. As depicted in figure 1, the data can be 
stored with either consecutive size-classes (left) or 
consecutive node numbers (middle). With the “class 
first” layout the entire equation system for each node 
is stored in a continuous memory region. In an itera-

tion over this data, the class index varies faster than 
the node index. Conversely, in the “node first” lay-
out all equations that correspond to a certain size 
class are stored together, and the node index varies 
faster than the class index. For the cuSparse solver 
(right) each of the diagonals are supplied in a sepa-
rate array, and multiple equation systems must be 
stored in the “class first” fashion. For each layout, 
the right hand sides of the equations are stored the 
same way as the matrix elements, but this is left out 
of the figure. 

The faster memory access is achieved when con-
secutive threads access consecutive data addresses, 
as this allows coalesced memory operations. How-
ever, the chosen implementations of phases 2 and 3 
imply that the organization of the equation system 
cannot be optimal for both phases simultaneously: 
The TDMA solver benefits from the “node first” 
memory layout, while the setup-kernel is more effi-
cient with the “class first” layout. The optimal stor-
age scheme for the TDMA approach must be deter-
mined based on empirical studies of the combined 
performance. 

Table 1 summarize the parallelization strategies 
as a list of the specific kernel implementations that 
we will examine in the next section. For the setup 
and solution phases, we investigate three sets of 
kernels that comprise three different parallelization 
strategies:  
1. Storing the equation system with consecutive 

node numbers. Kernels: setupNodeFirst and sol-
veNodeFirst.  

2. Storing the equation system with consecutive size 
classes. Kernels: setupClassFirst and 
solveClassFirst.  

3. Storing the equation system in the format re-
quired by cuSparse. Kernels: setupCuSparse and 
cusparseSgtsvStridedBatch.  
The cuSparse solver expects four vectors, one 

for each of the diagonals and one for the right hand 
side. The “strided batch” version of the solver ac-
cepts multiple equation systems. Using the terminol-
ogy developed above, we may describe this storage 
format as a “class first” layout. 

The histogram data and the tridiagonal equation 
system were stored as single precision floats (4 
bytes), but intermediate calculations, like the growth 
rates for the size classes, were done using double 
precision (8 bytes). For all kernels we fixed the 
block size at 256 threads per block and used up to 56 
blocks. These launch parameters imply four blocks 
per SM on our GPU, and maximizes the hardware 



 INFORMATYKA W TECHNOLOGII MATERIAŁÓW 

 – 133 – 

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E
 

limit of 1024 threads per SM. Using the guided 
analysis system of NVIDIA Visual Profiler, we de-
termined that these values provide a good balance 
with respect to latency, memory usage, and concur-
rency for large workloads. 

5. PERFORMANCE MEASUREMENTS 

The three parallelization strategies were tested 
and verified against our existing OpenMP-acceler-
ated implementation. The performance testing was 
done on a computer with two Intel Xeon X5675 
CPUs (3.07 GHz), 48 GB RAM, and an NVIDIA 
Tesla C2070 GPU with 6 GB memory. The GPU has 
14 symmetric multiprocessors with 32 cores each, 
which makes a total of 448 cores. On the system, the 
CPU and the GPU are contemporaries. Error Cor-
recting Codes (ECC) was enabled during perfor-
mance measurements. 

For each of the kernels listed in table 1, we per-
form the following steps:  
1. Save the current time. 
2. Launch multiple instances of the kernel asyn-

chronously from within a for-loop. Each kernel 
will be executed as soon as the previous kernel 
finishes (in serial). 

3. Wait for all the kernels to finish by calling 
“cudaDeviceSynchronize”. 

4. Query the current time and calculate the elapsed 
time.  
We compiled an optimized executable that, for 

all kernels, performed this measurement procedure 
twice in rapid succession. This program was exe-
cuted at least three times for each data point, and the 
minimum value of all measured execution times was 
collected as the result. This method provides an up-
per bound of the performance under ideal condi-
tions. 

To investigate how the performance of the ker-
nels depend on the number of geometric nodes and 
the number of size classes, we varied both of these 
parameters and measured the execution time of the 
kernels. For a given number of nodes and size-clas-
ses, the number of kernel launches was adjusted so 
that the total computational work is held constant 
across all timing measurements. For the purpose of 
this analysis, we define the total computational work 
as  

  . (9) 

Here, N is the number of nodes, C the number of 
size classes and K the number of kernel launches. 

Keeping W constant allows a simple interpreta-
tion of the observed performance characteristics: A 
flexible kernel for general use should display a uni-
form, low execution time for a wide range of combi-
nations of N, C and K. The performance of a given 
combination measures how much of the GPU’s pro-
cessing capability we are able to use, and how much 
is wasted due to latency and general overhead such 
as the instructions related to kernel launch and 
memory allocations. 

The kernel launch and execution time can vary 
depending on the prior state of the GPU, and for 
small jobs this can lead to large variations in the 
measured execution time. Typically, the first in a 
series of rapid kernel launches will take slightly 
longer time, and this is commonly referred to as 
"warm up". In our measurements the warm up over-
head is averaged out; however, in applications of the 
KWN model the kernels are typically executed 
without warm up. For this reason we checked how 
the performance depends on the number of kernel 
launches K, and we found that on our hardware, the 
warm up overhead is of the order 10-20 microsec-
onds. Only for the tiniest configurations around 2 , is this overhead of any significance. (On 
the other hand, we will soon see that KWN models 
of that size are not relevant for GPU computations 
due to low performance.) 

Two characteristic use cases of the KWN-model 
were considered: (1) a case with a large number of 
geometric nodes and (2) a case with few geometric 
nodes, including the special case with only a single 
node. 

Case (1) could correspond to the post weld heat 
treatment of a work piece modeled with a fine FEM-
mesh, or a welding simulation of a large work piece 
with long weld paths. A large portion of the geome-
try is in a relevant temperature range, and the simu-
lation requires a large number of independent KWN-
models. For this use case we measured the execution 
times of the total work load 2 . The number 
of nodes varied from 2  to 2  and the 
number of size classes covered the range 2  to 2 . Due to the memory limits of the GPU, the 
largest system we tested was 2 kernel launches with 2 . Our OpenMP implementation processes 
this work load in about one minute when running 
with a single thread. 

Case (2) could arise in a tack welding process, 
where only a tiny part of the work piece reaches 
temperatures for which the KWN-model becomes 
relevant, or it could represent point models where 
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the simulation in a single point is assumed to be 
valid throughout a uniform material. For this case 
we fixed the total computational work at 2 . 
N varied from 1 to 32, and C from 2  to 2 . While 
this number of classes is extremely high for practical 
use of the KWN model, it is relevant in this context. 
It provides a reference point for the cuSparse tridi-
agonal solver, which is made for equation systems of 
even larger dimensions. The OpenMP implementa-
tion processes this work load in about one second 
when running with a single thread. 

6. RESULTS 

Figure 2 provides an overview of the combined 
performance of the kernels in each of the three par-
allelization strategies. For all strategies, we observe 
a high and relatively uniform utilization of the GPU 
for cases with 2  as long as the case is well 
within the memory constraints of the device. The   
 

 

“Class first” strategy has the worst performance in 
most of the configurations. For the cuSparse ker-
nels,there is a visible dependence on the number of 
classes C, as the GPU utilization is better for higher 
C. This tendency applies even for the cases with low 
N, and this strategy performs reasonably well also in 
that region as long as C is large enough. The other 
two strategies do not exhibit any significant benefits 
from large C, and suffer severe penalties for all cas-
es with 2 . 

Memory limits of the GPU prohibited the evalu-
ation of the cuSparse solver for some cases with 2 . These configurations are colored black in 
the “cuSparse” pane of the figure. For work loads in 
this range there is no clear winner among the other 
two strategies. The “node first” strategy performs 
better in general, but receives a big penalty when N is 
large and we approach the memory limit of the de-
vice. Interestingly, the “class first” strategy displays a 
similar penalty at the memory limit when 2 . 

 

Fig. 2. Total execution time of case (1) for the strategies listed in table 1 with the color coded range capped at 30 s. The dotted lines 
indicate the combinations of nodes and classes that are examined more closely in figures 3–5. 

Fig. 3. Execution time of the individual kernels with 2  for case (1) with a total work load 2 . This corresponds to the 
upper horizontal line in figure 2. The solver bars in the cuSparse pane are missing because the solver exited with an out of memory 
error. 
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In figures 3 and 4, we display the performance of the 
individual kernels for fixed numbers of nodes, corre-
sponding to the horizontal lines in figure 2. We rec-
ognize the dramatic performance penalties for the 
“node first” strategy in figure 3 and for the “class 
first” strategy in figure 4. The penalties appear in 
different phases of the KWN-model for the two 

strategies: While the “node first” strategy has a bad 
performance in the setup kernel, the “class first” 
strategy suffers in the solver kernel.We have not 
been able to identify the exact mechanism behind 
the extreme performance drop in the kernels set-
upNodeFirst and solveClassFirst. However, a com-
mon trait of these kernels is that neighboring threads 

 

Fig. 4. Execution time of the individual kernels with 2  for case (1) with a total work load 2 . This corresponds to the 
lower horizontal line in figure 2.  

 

Fig. 5. Execution time of each kernel using a fixed number of classes, 2  for case (1) with a work load 2 . This corre-
sponds to the vertical line in figure 2. The high execution times for computations with few nodes reveal a low utilization rate of the 
GPU for the naive parallelization scheme.  

 

Fig. 6. Execution time of the kernels setupCuSparse and cusparseSgtsvStridedBatch for the small workload 2 . The color coded 
range is capped at 0.09 s in order to better display the structure in the regions where the performance is within reasonable bounds. 
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need to access memory locations that are far apart, 
and the phenomenon seems to be triggered when the 
required amount of memory approaches the limita-
tions of the device. For this reason, we believe that 
the issue is related to operations in global memory, 
and a possible explanation is that the simultaneous 
access of strongly diverging memory locations leads 
to more cache misses. 

For the range of classes where the kernels have 
a stable, predictable performance, we see that the 
TDMA solvers benefit from the “node first” memory 
layout. Conversely, the setup kernels are more effi-
cient with the “class first” layout. These observa-
tions are consistent with the discussion of coalesced 
memory access in section 4. 

In figure 5 the number of size classes is kept 
constant and we see how the resource utilization of 
the individual kernels depend on the number of 
nodes. This corresponds to the vertical line in fig-
ure 2. Both the TDMA-based solvers and the prepro-
cessing kernel perform poorly for the cases with few 
nodes. What these kernels have in common, is the 
naive parallelization scheme. When the hardware 
limits on maximum number of concurrent threads 
exceeds the number of nodes, parts of the GPU re-
main idle, and the throughput drops dramatically. 
The setup kernels and the cuSparse solver imple-
ment more sophisticated parallelization. These ker-
nels are able to activate the entire GPU throughout 
the range of N displayed in the figure. 

Having identified the limitations of the naively 
parallelized kernels, we expect them to perform 
poorly for case (2), where the number of nodes is 
even lower. For this work load, only the cuSparse 
based parallelization strategy seems viable, so we 
will now focus only on that strategy. As discussed in 
section 4, the implementation of a preprocessing 
kernel with better parallelization properties is 
straightforward. However, we will not follow that 
path in this work. Instead, we restrict the following 
discussion to the performance of the setup and solv-
er kernels of the cuSparse based strategy. 

As a reference value for the expected execution 
time of case (2), we use timing results corresponding 
to the best hardware utilization in case (1) and scale 
it down by a factor 2 . In figures 3 and 4 the fastest 
execution times for the cuSparse setup and solver 
are slightly more than 2 seconds. From this, we con-
clude that the total execution time both kernels will 
take at least 0.03125 s, and the GPU is utilized ex-
tremely well if the two kernels finish case (2) in 
such a short time. We choose the reference value 

0.032 s for the following discussion, but do not ex-
pect to see this performance in practice. Even in the 
efficient regions of case (1) the utilization is some-
times lower than this reference value. 

In figure 6, the execution time is displayed for 
case (2): simulations with few instances of the KWN 
model. For both kernels the triangular structure is 
striking. It reveals that for small workloads the per-
formance of the cuSparse based strategy depends on 
the product NC, that is, on the total number of histo-
gram bins. In the left pane the setup kernel displays 
an additional, almost linear improvement towards 
higher number of nodes. Since the axes of the plot 
are logarithmic, the linear trend in the plot is a loga-
rithmic trend versus the node number N. 

The best efficiency in figure 6 is found in the top 
right corner where the combined execution time is 
0.048 s. This corresponds to an increase relative to 
the reference time by a factor of 1.5. The configura-
tions with 2  constitute an interesting diago-
nal in the right pane, for which the cuSparse solver 
alone exceeds the reference time by a factor of 1.5. 
For all workloads above this diagonal, 2 , 
the running time of the solver is less than the refer-
ence time. Here, most of the time is spent in the 
setup kernel, which, as displayed in the left pane, 
improves linearly with 2  in the region. The running 
time as a multiple of the reference time varies ap-
proximately from 2 to 1 as N increases from 1 to 2 . 

In summary, for the triangle of configurations 
with 2 , 2 , and 2 , we see that 
the total running time of both kernels increases by 
a factor in the range of 1.5−3 relative to the refer-
ence time. A factor of 3 is a significant penalty, as it 
indicates a hardware utilization of only one third of 
the observed capacity in the larger case. Similarly, 
the factor of 1.5 means that the hardware delivers 
two thirds of the realistic performance. While this is 
a large performance drop, it is not unexpected, con-
sidering that the workload of case (2) is quite small 
compared to case (1). On the other hand, even with 
such reductions of performance, a GPU implemen-
tation of the KWN model may run faster than a cor-
responding CPU implementation, but this also de-
pends on the available hardware. For 2  the 
performance drop is dramatic, and the GPU imple-
mentation is unlikely to provide benefits over a CPU 
implementation. The diagonal at 2  corre-
sponds to about 4700 histogram bins per multipro-
cessor, or 146 per GPU core. 
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7. CONCLUSION 

We have demonstrated that KWN-type models 
are well suited for parallelization on GPU hardware, 
provided that the total number of histogram bins is 
large enough, and that suitable algorithms are cho-
sen. In particular, the benefits are great when the 
KWN microstructure model is coupled with a mac-
roscopic model processed by the CPU that does not 
need the KWN output for every time step. In this 
situation, if the KWN model is efficient enough that 
it completes the time step equally fast as the macro-
scopic model, the microstructure can be included in 
the simulation with negligible additional running 
time. 

To make the KWN fast enough, the cuSparse 
based strategy gives the best performance over a 
wide range of model configurations, including to-
wards the limit of small models. The hardware utili-
zation for small cases is reduced, and for our 
graphics card, we identified 2  as a mini-
mum model size if a GPU implementation is consid-
ered. This corresponds to about 146 histogram bins 
per GPU core. For smaller cases, the achieved per-
formance deteriorates rapidly. 

In the limit of large cases, memory limitations 
may prevent the use of the cuSparse solver, and the 
other two strategies are good alternatives. However, 
it may be important to examine their performance in 
configurations that approaches the memory limita-
tions of the GPU. In our experiments the “node first” 
strategy performs better in most cases, but the setup 
kernel has a severe performance hit at the limit of 
the available device memory. The “class first” strat-
egy has a more predictable performance in cases 
with a large number of nodes, but is generally slow-
er due to the memory traffic pattern of the solver. 

This work has been performed in the project 
AluCaW with support from the Norwegian Research 
Council, grant number 228466/O30, and with the 
following partners: Benteler Aluminium Systems 
Norway AS, Benteler Automotive Farsund AS, Im-
petus AFEA AS, Prediktor AS and the Institute for 
Energy Technology. 
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IMPLEMENTACJA GPU NUMERYCZNEGO MODEL 
KAMPMANNA-WAGNERA DLA WYDZIELEŃ 

Streszczenie 
 
Model Kampmanna-Wagnera dla wydzieleń (KWN) został 

zaimplementowany za pomocą frameworku NVIDIA CUDA 
w numerycznym programie dla kart graficznych (GPU). W pracy 
przedyskutowano różne strategie implementacji i oceniono wy-
dajność poszczególnych rozwiązań. Badano dwa reprezentatywne 
przypadki odpowiadające małemu i dużemu obciążeniu oblicze-
niowemu. Zauważono, że model jest odpowiedni dla implementa-
cji GPU, zakładając że obciążenie jest wystarczające aby proceso-
ry były obciążone i że wybrana jest odpowiednia strategia zrów-
noleglenia. Dla urządzeń użytych w pracy zarekomendowano 
minimalne obciążenie 216 histogramów czyli dyskretyzowanych 
cząstek (jako sumę wszystkich histogramów), co odpowiada 146 
histogramów na jedną GPU. Kiedy model KWN jest połączony 
z innymi obliczeniami prowadzonymi na GPU, poprawa wydaj-
ności może być uzyskana dzięki temu że model KWN wykorzy-
stuje tylko niewielką część czasu procesora. Ponadto, jeżeli model 
KWN jest wykorzystany oddzielnie dla dużego zadania, imple-
mentacja GPU osiąga dobrą skalowalność i wydajność. 
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