

 127 – 138 ISSN 1641-8581

Publishing House

A K A P I T

COMPUTER METHODS IN MATERIALS SCIENCE
Informatyka w Technologii Materiałów

Vol. 16, 2016, No. 3

GPU IMPLEMENTATION OF KAMPMANN-WAGNER
NUMERICAL PRECIPITATION MODELS

Øyvind Jensen*1, Henrik Lam2, Hallvard G. Fjær1

1 Institute for Energy Technology, N-2027 Kjeller, Norway
2 Impetus AFEA, SE-14160 Huddinge, Sweden
*Corresponding author: oyvind.jensen@ife.no

Abstract

A Kampmann-Wagner type numerical precipitation model (KWN) has been implemented using NVIDIA’s CUDA
framework for numerical programming of the graphics processing unit (GPU). Different implementation strategies are
discussed and subjected to performance measurements. We study two representative cases corresponding to a large and
a small workload. The model is found to be well suited for a GPU implementation, provided that there is enough work to
keep the device busy and the right parallelization strategy is chosen. For our hardware, we recommend a minimum work
load of more than 2 histogram bins (as the total of multiple histograms) which corresponds to 146 histogram bins per
GPU core. When the KWN model is used in combination with other calculations that are processed by the CPU, the per-
formance improvements can be such that the KWN model incurs only negligible additional execution time. Also if the
KWN model is used standalone for a large case, the GPU implementation achieves good scalability and performance.

Key words: GPU, precipitation, numerical modeling, KWN-model

1. INTRODUCTION

This paper addresses the use of a computer’s
graphical processing unit (GPU) for efficient com-
puter implementations of precipitation models that
are based on Kampmann and Wagner’s N-model
(KWN) for diffusion controlled growth (Wagner &
Kampmann, 1991). Using the CUDA-framework of
NVIDIA, we implemented a GPU version of the
KWN model for our simulation software, WeldSim
(Myhr et al., 1998; Fjær et al., 2001; Myhr et al.,
2002). A typical thermo-mechanical simulation of
the heat treatment of aluminium parts, will often
take several days using our optimized OpenMP im-
plementation of the KWN model. By delegating the
KWN model to the GPU, we experienced a four-fold
speed up compared to the OpenMP implementation
running with 4 threads. In this paper we describe
how we achieved this speedup, and analyze the

KWN model from the perspective of GPU-
programming.

The KWN approach keeps track of the size dis-
tribution as well as the total number density of pre-
cipitates in the alloy. The model accounts for im-
portant features of age hardening materials, such as
the dependence on the thermal history as well as the
consumption of alloying elements that are stored in
the precipitates during growth and released by dissi-
pation. By specification of the relevant nucleation
and growth kinetics, the model can, in principle, be
used with any alloy that has some kind of precipi-
tate. From the particle size distribution one derives
macroscopic material properties of the material.

KWN-type models have been used successfully
to model a wide range of age hardening materials.
Of the aluminium alloys, the 6000 series (Myhr
et al., 2002; Simar et al., 2007; Bahrami et al., 2012;
Wu & Ferguson, 2009), the 7000 series (Nicolas &

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

INFORMATYKA W TECHNOLOGII MATERIAŁÓW

– 128 –

Deschamps, 2003), and the 2000 series (Khan et al.,
2008), as well as Al-Sc (Robson et al., 2003) and Al-
Mg-Sc alloys (Fazeli et al., 2008) have been studied.
Applications have also been reported for iron alloys,
such as Fe-Cu (Yang & Enomoto, 2005), Fe-C-Mn
(Öhlund et al., 2014) and Fe–C–Mn–Ti (Öhlund
et al., 2015). Material specific characteristics of the
growth mechanism can easily be added, such as the
effect of excess vacancies on the diffusivity studied
by Fazeli et al. (2008). The approach has also been
adapted for multiple metastable phases and multiple
alloy elements by den Ouden et al. (2013).

This paper is structured as follows: In section 2
we briefly outline the characteristics of Kampmann-
Wagner type precipitation models with a focus on
the computational structure. Section 3 provides a
brief background for readers that are not familiar
with GPU-programming, and in section 4, we
analyze the KWN model and present strategies for
an efficient parallelization. The numerical
experiments are described in Section 5, and the
performance results are presented and discussed in
section 6.

2. THE SIZE CLASS APPROACH TO
PRECIPITATION MODELING

Because we will analyze the KWN-type models
from the perspective of parallel computations, it is
useful to describe the central framework common to
KWN-type precipitation models. We focus on the
computational aspects, and do not aim to provide a
description of the physics. On the contrary, we try to
avoid material- and process-specific details and refer
the interested reader to the relevant literature.
(Wagner & Kampmann, 1991; Simar et al., 2012;
Myhr & Grong, 2000; Myhr et al., 2001).

The central idea to KWN-type precipitation
models is to keep track of a size distribution of
precipitates in an alloy. The time evolution of this
size distribution is calculated using assumptions
about the stoichiometry of the precipitates, as well as
thermodynamic properties and diffusion kinetics.
The specific particle size distribution is then used to
estimate macroscopic properties of the material,
such as the yield stress, the hardness value (HV),
and the work hardening rate.

2.1. The particle size distribution

If 0 denotes a characteristic size, the

distribution 0 denotes the number density
per volume and size unit of precipitates of that size.

The total number of precipitates per volume at a
material point is then

  . (1)

For spherical particles corresponds to the
radius, but other interpretations are possible. The
mean size of the precipitates is given by the
statistical expectation value:

  . (2)

Other quantities, such as the total precipitate-
matrix interface area or the volume fraction of the
secondary phase, are readily calculated. For
example, the volume fraction of precipitates is given
by

  . (3)

Here, expresses the volume of a precipitate
of size , so that for spherical precipitates one would
use 4 /3.

When some amount of solute element i is tied up
in the precipitated phase, the remaining
concentration in solid solution, , is reduced
according to the expression:

  . (4)

Here, denotes the initial solute concentration
in the matrix, and is the concentration of solute i
in the precipitate. In the following, we will drop the
superscript (i) for aesthetic reasons, but urge the
reader to keep in mind that the formalism is not
restricted to alloys with only a single solute element.

The relations (1) – (4) all provide points of
contact between the microscopic KWN-model and
some macroscopic model. Information is aggregated
from the precipitation model and made available as
macroscopic quantities. Communication in the other
direction is implemented in the equations that
govern the time evolution of the particle size
distribution.

2.2. Time evolution

As the precipitates grow or shrink, the number of

particles is conserved, except for the particles that
are dissolved at or nucleated slightly above
a critical radius ∗. This is expressed with the
number conserving equation,

  ,    . (5)

 INFORMATYKA W TECHNOLOGII MATERIAŁÓW

 – 129 –

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

Here, , is the nucleation rate, and , is the growth rate of precipitates of size
r. The product represents the flux of particles
along the axis , so that | would be the num-
ber of particles that pass through an imaginary
boundary at ′ per unit of time. The source term, , is
typically calculated using classical nucleation theo-
ry, and depends (at least) on the temperature T and
the level of supersaturation of solute elements as
macroscopic input parameters.

Let denote the growth rate for particles of
size at a given time. In classical KWN approaches,
we assume that the precipitate growth is limited by
the diffusion of a particular solute element, and the
instantaneous growth rate can be calculated as

  . (6)

Here, all quantities refer to the growth limiting
solute element: D is the diffusion constant, and
is the concentration at the particle/matrix interface.
We note that since , the sign of depends

only on the difference .
In general, must be determined from the

Gibbs-Thomson equation (GT), which states how
the solubility limit of the solute element at the parti-
cle/matrix boundary depends on the curvature of the
particle. Although other approximations may some-
times be preferable (den Ouden et al., 2013; Perez,
2005), the GT correction for spherical particles in a
binary or quasi-binary alloy is often expressed in the
form

 exp  . (7)

Here, encapsulates information about the so-
lute, the solvent and the temperature. The planar
equilibrium concentration (for ∞) is denoted by

. Returning focus to equation (6), we see that for
small enough , the growth rate will be negative
because of the GT-effect. The size for which a pre-
cipitate neither grows nor shrinks, is precisely the
critical radius ∗.

2.3. Discretization of the number conservation

equation

The discretized form of the particle size distribu-

tion is a histogram. By partitioning the r-axis into
several intervals we can define the number density
of each “size class” i by,

//  . (8)

The height of the histogram bars is / ,
where is the width of size class i.

A computationally efficient and numerically ro-
bust implementation of the KWN model was pre-
sented by Myhr and Grong (2000). They considered
the size classes as control volumes, and solved the
number conservation equation 5 for each control
volume. All control volumes were coupled with the
neighboring control volumes, corresponding to
slightly larger/smaller precipitate sizes. This results
in a tridiagonal system of equations. Numerical ro-
bustness and accuracy was achieved with an upwind
scheme (Patankar, 1980), which adapts the numeri-
cal operations dynamically to the direction of infor-
mation in the running simulation. Specifically, the
sign of the growth rate determines if the equation for
a particular size class include terms that depend on
the neighboring size class, or if it is the other way
around. The procedure is described thoroughly by
Myhr and Grong (2000).

3. CHARACTERISTICS OF GPU
PROGRAMMING

For readers that are unfamiliar with GPU pro-
gramming, we provide a brief introduction to some
of the central concepts. The reason that the GPU can
outperform a contemporary CPU for certain compu-
tational workloads, is that the hardware is structured
differently. A traditional CPU usually have a few
cores, that can launch threads that are good at all-
round instructions. These threads run fast, but due to
the low number of cores, the speedup gained by
using multiple threads is limited. Conversely, a GPU
can have thousands of cores that launch light-weight
threads. These threads are not as fast as the CPU
counterpart, but they provide efficient parallelization
by weight of numbers.

In order to utilize the GPU efficiently, the pro-
grammer needs to explicitly organize data into dif-
ferent categories of memory, and use each type of
memory hardware in ways that benefit from the
memory characteristics. In increasing order of speed,
and decreasing order of capacity, the main memory
categories are: global memory, shared memory, and
on-chip registers. Threads running on the GPU are
grouped into blocks that execute independently from
each other. The threads within a block run logically
in parallel, and are able to synchronize, and to com-
municate efficiently via shared memory. Of all
threads in a block, batches of 32 threads (a warp)
will execute physically in parallel.

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

INFORMATYKA W TECHNOLOGII MATERIAŁÓW

– 130 –

The GPU contains several Streaming Multipro-
cessors (SM) that execute blocks from a job queue.
Depending on the implemented algorithm, the code
that runs on the GPU may need a low or a high
number of on-chip registers for each thread. Hence,
the amount of register memory of each SM will of-
ten limit the maximum number of threads in a block.
The NVIDIA GPU architecture is based on the Sin-
gle Instruction, Multiple Thread (SIMT) execution
model. The advantage of SIMT is its capability to
circumvent memory-access latency. Writing and
reading from global memory can be costly and
SIMT can hide the latency by letting the SM quickly
switch to another block. However, SIMT cannot
handle divergent branches within warps, and must
resort to serialized execution of the different branch-
es.

The efficiency of memory transfer to/from glob-
al memory depends strongly on the memory access
pattern. To achieve good performance it may be
necessary to organize data in a certain way. The
fastest memory transfer to/from global memory is
achieved when consecutive threads access consecu-
tive memory locations (coalesced access). For over-
all performance, it is important to balance the time
spent reading or writing to global memory with the
time spent on calculations.

Finally, we mention that GPU hardware has
evolved rapidly. Newer graphics cards have more
functionality than older cards, and the relative per-
formance of specific operations differ. The CUDA
programmer can account for this by querying the
Compute Capability (CC) of the installed GPU, and
execute code that is optimized for the detected CC.

4. STRATEGIES FOR PARALLELIZATION

If the KWN precipitation model is used together
with a macroscopic model, there may be an immedi-
ate, high level parallelization in that the CPU and the
GPU can run simultaneously. This is only possible if
the macroscopic model and the KWN model are
coupled unidirectionally, that is, if only one of the
models require input from the other. This is an im-
portant factor behind the four-fold speed improve-
ment we experienced for our software, WeldSim.

In the thermo-mechanical welding calculations,
the KWN model requires input from the thermal
calculation, but the output from the KWN-model is
only needed for the mechanical time steps. Since the
mechanical time step can be set much larger than the
thermal time step in most welding simulations,

Δ . ≪ Δ ., it is only occasionally that the
CPU needs to wait for output from the GPU. If also
the computations on the GPU are fast enough to
complete before the CPU has finished processing the
next macroscopic time step, there will be only negli-
gible additional execution time for a simulation with
or without the KWN micro structure model. How-
ever, to achieve this level of performance in practi-
cal applications, it was necessary to carefully opti-
mize the KWN model for the GPU.

If the KWN model is used to simulate the local
micro structure at several locations on a macroscopic
geometry, for example at each of the nodes of a fi-
nite element mesh, the precipitation at one position
does not depend on the particle distributions else-
where. This provides a straightforward path to par-
allelization, by simply running one separate instance
of the KWN model for each node.

Parallelizing with OpenMP or MPI, we might
expect good performance and scalability by this
approach. However, for a GPU-implementation, this
simple parallelization scheme does not work opti-
mally, because of the limited resources available for
each thread on GPU hardware. Fortunately, the
KWN-type precipitation models are suitable for
parallelization along several axes.

The time spent on the KWN-type precipitation
model can be divided into a number of phases:
1. Nucleation and calculation of aggregate values

that are necessary to determine the evolution of
(preprocessing and postprocessing).

2. Setup of the tridiagonal matrix.
3. Solution of the tridiagonal system of equations.

All three phases are characterized by a computa-
tional complexity that scales linearly with the num-
ber of size classes and with the number of nodes. In
our optimized OpenMP implementation (WeldSim),
most of the execution time is spent in the phases 2
and 3. In phase 1 the time consuming task is the
evaluation of integrals like equation 3. In phase 2
much computational resources are spent on the cal-
culation of logarithms and exponential functions in
order to determine the growth rate for each of the
size classes. Phase 3 is solved using the Tri-Diago-
nal Matrix Algorithm (TDMA), which solves
a three-diagonal system of equations by direct
Gaussian elimination in two sweeps over the rows. It
involves only elementary arithmetic operations on
an array of floating point values.

Note that the aggregation phase could have been
split up into pre- and post-processing phases, and
this is how it is organized in our code. However, as

 INFORMATYKA W TECHNOLOGII MATERIAŁÓW

 – 131 –

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

the pre- and post- calculations are very similar, we
have chosen to simplify the description by combin-
ing the pre- and post-processing phases into a single
aggregation phase. In the performance measure-
ments, the aggregation phase is represented only by
the preprocessing calculations.

The histograms and the equation systems must
be stored in global memory on the GPU, but there is
no need to copy this data back and forth to the host
RAM during the simulation. The largest data trans-
fers between the host computer and the device in
each timestep are the small set of local input param-
eters and the aggregated output values for each node.
Because of this, the time spent on data transfer be-
tween GPU and host RAM is negligible compared to
the time spent processing the histograms.

Each phase of the KWN model is implemented
in a separate kernel (function that execute on the
GPU). We will now discuss to what extent the phas-
es are suitable for parallelization on GPU hardware.
The discussion will lead to a number of kernels that
comprise three different parallelization strategies.
Table 1 gives an overview of the strategies and the
associated kernels. In section 5 these kernels will be
used to measure and compare the performance of the
parallelization strategies.

Table 1. Overview of the kernels that implement the KWN phas-
es for each of the parallelization strategies

4.1. The aggregation phase

The aggregation phase, which is represented by

the preprocess kernel, consists essentially of ele-
mentary mathematical operations applied to consec-
utive memory arrays. In our OpenMP implementa-
tion, this does not take a significant portion of time.
We implemented only the naive, node-based paral-
lelization for this kernel, and we found that it was
good enough for the needs of WeldSim. However,
we don’t expect very good performance of the pre-
process kernel for cases with few nodes. On the oth-
er hand, the performance of the preprocess kernel
relative to the other kernels provides useful insight
on the merits of the naive parallelization scheme.

The same kernel is used in all parallelization strate-
gies.

For readers with a particular interest in cases
with only a few simultaneous KWN models, we
point out that a parallelized extraction of aggregate
values from the particle size distribution can make
use of well established parallel computing patterns.
For example, the calculation of the total particle
volume, equation 3, is readily formulated as a par-
allel transform-reduce operation acting on the parti-
cle size distribution histogram. As long as the histo-
grams are large enough, we expect a high perfor-
mance from such a GPU implementation.

4.2. Setup of the tri-diagonal equation system

To define the equation system we must compute

all coefficients of the tridiagonal matrix for each of
the size classes and for each geometric node. This
includes multiple independent evaluations of the
growth rate as given by equations 6 and 7. To in-
crease parallelism, we let each thread compute the
coefficients for a single row in the matrix associated
with a single mesh node.

Including the right hand side, each row of the
tridiagonal equation system has four values, which
fits into the structs float4 or double4 that are built-in
language extensions in CUDA. The use of these
types may result in faster memory transfer, com-
pared to four separate float/double variables, due to
the use of vectorized load/store instructions.

The calculation of coefficients for the equation
system depends on values that are node specific,
such as the concentration in solid solution and the
local temperature. We reduce the number of load
operations from global memory by letting several
threads in a block compute coefficients for the same
geometric node. The input values can then be loaded
from global memory by a single thread, and made
available to the block via shared memory. For
NVIDIA devices with CC ≥ 2.0, reads from the
same address in shared memory are broadcasted
efficiently to all threads in the warp. This organiza-
tion of work implies that consecutive threads will set
up consecutive rows in the system of equations.

The phases 2 and 3 are tightly coupled, as the
former creates the input to the latter. Since perfor-
mance may depend strongly on the memory access
pattern, the efficiency of one may come with the
cost of a reduced efficiency of the other. It is there-
fore important to consider the performance of the
two phases together. We investigated three different

Phase Node First Class First cuSparse

1 preprocess preprocess preprocess

2 setupNodeFirst setupClassFirst setupCuSparse

3 solveNodeFirst solveClassFirst
cusparseSgtsvStrided

Batch

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

INFORMATYKA W TECHNOLOGII MATERIAŁÓW

– 132 –

kernels for the setup phase, and the differences be-
tween them will be clarified in the following sec-
tions.

4.3. Solution of the tridiagonal equation system

A sophisticated parallel algorithm for tridiagonal

systems of equations is implemented in the cuSparse
library. (Chang et al., 2012; Zhang et al., 2010) This
solver is very fast, but requires significant amounts
of temporary storage (NVIDIA Corporation, 2015).
In comparison, the TDMA is unsuitable for a paral-
lel implementation because the operations in one
iteration depend on results from the previous itera-
tion. On the other hand, TDMA does not require
much working space memory. Moreover, for cases
with a large number of geometric nodes, it is possi-
ble that the naive parallelization scheme applied to
the TDMA can utilize the GPU sufficiently well, and
thus achieve good performance.

In this work, we chose to investigate the cuS-
parse tridiagonal solver as well as two different im-
plementations of the TDMA. Both TDMA kernels
use, by necessity, the naive parallelization scheme
where each thread applies the TDMA algorithm for
a specific geometric node. This organization of work
implies that consecutive threads will access rows of
the equation system for consecutive geometry nodes.

Fig. 1. Alternatives for the memory layout of the equation sys-
tem. As depicted, the rows of the matrices can be associated
with the size classes of the histograms.

4.4. Memory layout

To maximize the overall performance of the

equation setup and the TDMA, two ways to organize
the equation system data as a two-dimensional array
was tested. As depicted in figure 1, the data can be
stored with either consecutive size-classes (left) or
consecutive node numbers (middle). With the “class
first” layout the entire equation system for each node
is stored in a continuous memory region. In an itera-

tion over this data, the class index varies faster than
the node index. Conversely, in the “node first” lay-
out all equations that correspond to a certain size
class are stored together, and the node index varies
faster than the class index. For the cuSparse solver
(right) each of the diagonals are supplied in a sepa-
rate array, and multiple equation systems must be
stored in the “class first” fashion. For each layout,
the right hand sides of the equations are stored the
same way as the matrix elements, but this is left out
of the figure.

The faster memory access is achieved when con-
secutive threads access consecutive data addresses,
as this allows coalesced memory operations. How-
ever, the chosen implementations of phases 2 and 3
imply that the organization of the equation system
cannot be optimal for both phases simultaneously:
The TDMA solver benefits from the “node first”
memory layout, while the setup-kernel is more effi-
cient with the “class first” layout. The optimal stor-
age scheme for the TDMA approach must be deter-
mined based on empirical studies of the combined
performance.

Table 1 summarize the parallelization strategies
as a list of the specific kernel implementations that
we will examine in the next section. For the setup
and solution phases, we investigate three sets of
kernels that comprise three different parallelization
strategies:
1. Storing the equation system with consecutive

node numbers. Kernels: setupNodeFirst and sol-
veNodeFirst.

2. Storing the equation system with consecutive size
classes. Kernels: setupClassFirst and
solveClassFirst.

3. Storing the equation system in the format re-
quired by cuSparse. Kernels: setupCuSparse and
cusparseSgtsvStridedBatch.
The cuSparse solver expects four vectors, one

for each of the diagonals and one for the right hand
side. The “strided batch” version of the solver ac-
cepts multiple equation systems. Using the terminol-
ogy developed above, we may describe this storage
format as a “class first” layout.

The histogram data and the tridiagonal equation
system were stored as single precision floats (4
bytes), but intermediate calculations, like the growth
rates for the size classes, were done using double
precision (8 bytes). For all kernels we fixed the
block size at 256 threads per block and used up to 56
blocks. These launch parameters imply four blocks
per SM on our GPU, and maximizes the hardware

 INFORMATYKA W TECHNOLOGII MATERIAŁÓW

 – 133 –

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

limit of 1024 threads per SM. Using the guided
analysis system of NVIDIA Visual Profiler, we de-
termined that these values provide a good balance
with respect to latency, memory usage, and concur-
rency for large workloads.

5. PERFORMANCE MEASUREMENTS

The three parallelization strategies were tested
and verified against our existing OpenMP-acceler-
ated implementation. The performance testing was
done on a computer with two Intel Xeon X5675
CPUs (3.07 GHz), 48 GB RAM, and an NVIDIA
Tesla C2070 GPU with 6 GB memory. The GPU has
14 symmetric multiprocessors with 32 cores each,
which makes a total of 448 cores. On the system, the
CPU and the GPU are contemporaries. Error Cor-
recting Codes (ECC) was enabled during perfor-
mance measurements.

For each of the kernels listed in table 1, we per-
form the following steps:
1. Save the current time.
2. Launch multiple instances of the kernel asyn-

chronously from within a for-loop. Each kernel
will be executed as soon as the previous kernel
finishes (in serial).

3. Wait for all the kernels to finish by calling
“cudaDeviceSynchronize”.

4. Query the current time and calculate the elapsed
time.
We compiled an optimized executable that, for

all kernels, performed this measurement procedure
twice in rapid succession. This program was exe-
cuted at least three times for each data point, and the
minimum value of all measured execution times was
collected as the result. This method provides an up-
per bound of the performance under ideal condi-
tions.

To investigate how the performance of the ker-
nels depend on the number of geometric nodes and
the number of size classes, we varied both of these
parameters and measured the execution time of the
kernels. For a given number of nodes and size-clas-
ses, the number of kernel launches was adjusted so
that the total computational work is held constant
across all timing measurements. For the purpose of
this analysis, we define the total computational work
as

  . (9)

Here, N is the number of nodes, C the number of
size classes and K the number of kernel launches.

Keeping W constant allows a simple interpreta-
tion of the observed performance characteristics: A
flexible kernel for general use should display a uni-
form, low execution time for a wide range of combi-
nations of N, C and K. The performance of a given
combination measures how much of the GPU’s pro-
cessing capability we are able to use, and how much
is wasted due to latency and general overhead such
as the instructions related to kernel launch and
memory allocations.

The kernel launch and execution time can vary
depending on the prior state of the GPU, and for
small jobs this can lead to large variations in the
measured execution time. Typically, the first in a
series of rapid kernel launches will take slightly
longer time, and this is commonly referred to as
"warm up". In our measurements the warm up over-
head is averaged out; however, in applications of the
KWN model the kernels are typically executed
without warm up. For this reason we checked how
the performance depends on the number of kernel
launches K, and we found that on our hardware, the
warm up overhead is of the order 10-20 microsec-
onds. Only for the tiniest configurations around 2 , is this overhead of any significance. (On
the other hand, we will soon see that KWN models
of that size are not relevant for GPU computations
due to low performance.)

Two characteristic use cases of the KWN-model
were considered: (1) a case with a large number of
geometric nodes and (2) a case with few geometric
nodes, including the special case with only a single
node.

Case (1) could correspond to the post weld heat
treatment of a work piece modeled with a fine FEM-
mesh, or a welding simulation of a large work piece
with long weld paths. A large portion of the geome-
try is in a relevant temperature range, and the simu-
lation requires a large number of independent KWN-
models. For this use case we measured the execution
times of the total work load 2 . The number
of nodes varied from 2 to 2 and the
number of size classes covered the range 2 to 2 . Due to the memory limits of the GPU, the
largest system we tested was 2 kernel launches with 2 . Our OpenMP implementation processes
this work load in about one minute when running
with a single thread.

Case (2) could arise in a tack welding process,
where only a tiny part of the work piece reaches
temperatures for which the KWN-model becomes
relevant, or it could represent point models where

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

INFORMATYKA W TECHNOLOGII MATERIAŁÓW

– 134 –

the simulation in a single point is assumed to be
valid throughout a uniform material. For this case
we fixed the total computational work at 2 .
N varied from 1 to 32, and C from 2 to 2 . While
this number of classes is extremely high for practical
use of the KWN model, it is relevant in this context.
It provides a reference point for the cuSparse tridi-
agonal solver, which is made for equation systems of
even larger dimensions. The OpenMP implementa-
tion processes this work load in about one second
when running with a single thread.

6. RESULTS

Figure 2 provides an overview of the combined
performance of the kernels in each of the three par-
allelization strategies. For all strategies, we observe
a high and relatively uniform utilization of the GPU
for cases with 2 as long as the case is well
within the memory constraints of the device. The

“Class first” strategy has the worst performance in
most of the configurations. For the cuSparse ker-
nels,there is a visible dependence on the number of
classes C, as the GPU utilization is better for higher
C. This tendency applies even for the cases with low
N, and this strategy performs reasonably well also in
that region as long as C is large enough. The other
two strategies do not exhibit any significant benefits
from large C, and suffer severe penalties for all cas-
es with 2 .

Memory limits of the GPU prohibited the evalu-
ation of the cuSparse solver for some cases with 2 . These configurations are colored black in
the “cuSparse” pane of the figure. For work loads in
this range there is no clear winner among the other
two strategies. The “node first” strategy performs
better in general, but receives a big penalty when N is
large and we approach the memory limit of the de-
vice. Interestingly, the “class first” strategy displays a
similar penalty at the memory limit when 2 .

Fig. 2. Total execution time of case (1) for the strategies listed in table 1 with the color coded range capped at 30 s. The dotted lines
indicate the combinations of nodes and classes that are examined more closely in figures 3–5.

Fig. 3. Execution time of the individual kernels with 2 for case (1) with a total work load 2 . This corresponds to the
upper horizontal line in figure 2. The solver bars in the cuSparse pane are missing because the solver exited with an out of memory
error.

 INFORMATYKA W TECHNOLOGII MATERIAŁÓW

 – 135 –

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

In figures 3 and 4, we display the performance of the
individual kernels for fixed numbers of nodes, corre-
sponding to the horizontal lines in figure 2. We rec-
ognize the dramatic performance penalties for the
“node first” strategy in figure 3 and for the “class
first” strategy in figure 4. The penalties appear in
different phases of the KWN-model for the two

strategies: While the “node first” strategy has a bad
performance in the setup kernel, the “class first”
strategy suffers in the solver kernel.We have not
been able to identify the exact mechanism behind
the extreme performance drop in the kernels set-
upNodeFirst and solveClassFirst. However, a com-
mon trait of these kernels is that neighboring threads

Fig. 4. Execution time of the individual kernels with 2 for case (1) with a total work load 2 . This corresponds to the
lower horizontal line in figure 2.

Fig. 5. Execution time of each kernel using a fixed number of classes, 2 for case (1) with a work load 2 . This corre-
sponds to the vertical line in figure 2. The high execution times for computations with few nodes reveal a low utilization rate of the
GPU for the naive parallelization scheme.

Fig. 6. Execution time of the kernels setupCuSparse and cusparseSgtsvStridedBatch for the small workload 2 . The color coded
range is capped at 0.09 s in order to better display the structure in the regions where the performance is within reasonable bounds.

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

INFORMATYKA W TECHNOLOGII MATERIAŁÓW

– 136 –

need to access memory locations that are far apart,
and the phenomenon seems to be triggered when the
required amount of memory approaches the limita-
tions of the device. For this reason, we believe that
the issue is related to operations in global memory,
and a possible explanation is that the simultaneous
access of strongly diverging memory locations leads
to more cache misses.

For the range of classes where the kernels have
a stable, predictable performance, we see that the
TDMA solvers benefit from the “node first” memory
layout. Conversely, the setup kernels are more effi-
cient with the “class first” layout. These observa-
tions are consistent with the discussion of coalesced
memory access in section 4.

In figure 5 the number of size classes is kept
constant and we see how the resource utilization of
the individual kernels depend on the number of
nodes. This corresponds to the vertical line in fig-
ure 2. Both the TDMA-based solvers and the prepro-
cessing kernel perform poorly for the cases with few
nodes. What these kernels have in common, is the
naive parallelization scheme. When the hardware
limits on maximum number of concurrent threads
exceeds the number of nodes, parts of the GPU re-
main idle, and the throughput drops dramatically.
The setup kernels and the cuSparse solver imple-
ment more sophisticated parallelization. These ker-
nels are able to activate the entire GPU throughout
the range of N displayed in the figure.

Having identified the limitations of the naively
parallelized kernels, we expect them to perform
poorly for case (2), where the number of nodes is
even lower. For this work load, only the cuSparse
based parallelization strategy seems viable, so we
will now focus only on that strategy. As discussed in
section 4, the implementation of a preprocessing
kernel with better parallelization properties is
straightforward. However, we will not follow that
path in this work. Instead, we restrict the following
discussion to the performance of the setup and solv-
er kernels of the cuSparse based strategy.

As a reference value for the expected execution
time of case (2), we use timing results corresponding
to the best hardware utilization in case (1) and scale
it down by a factor 2 . In figures 3 and 4 the fastest
execution times for the cuSparse setup and solver
are slightly more than 2 seconds. From this, we con-
clude that the total execution time both kernels will
take at least 0.03125 s, and the GPU is utilized ex-
tremely well if the two kernels finish case (2) in
such a short time. We choose the reference value

0.032 s for the following discussion, but do not ex-
pect to see this performance in practice. Even in the
efficient regions of case (1) the utilization is some-
times lower than this reference value.

In figure 6, the execution time is displayed for
case (2): simulations with few instances of the KWN
model. For both kernels the triangular structure is
striking. It reveals that for small workloads the per-
formance of the cuSparse based strategy depends on
the product NC, that is, on the total number of histo-
gram bins. In the left pane the setup kernel displays
an additional, almost linear improvement towards
higher number of nodes. Since the axes of the plot
are logarithmic, the linear trend in the plot is a loga-
rithmic trend versus the node number N.

The best efficiency in figure 6 is found in the top
right corner where the combined execution time is
0.048 s. This corresponds to an increase relative to
the reference time by a factor of 1.5. The configura-
tions with 2 constitute an interesting diago-
nal in the right pane, for which the cuSparse solver
alone exceeds the reference time by a factor of 1.5.
For all workloads above this diagonal, 2 ,
the running time of the solver is less than the refer-
ence time. Here, most of the time is spent in the
setup kernel, which, as displayed in the left pane,
improves linearly with 2 in the region. The running
time as a multiple of the reference time varies ap-
proximately from 2 to 1 as N increases from 1 to 2 .

In summary, for the triangle of configurations
with 2 , 2 , and 2 , we see that
the total running time of both kernels increases by
a factor in the range of 1.5−3 relative to the refer-
ence time. A factor of 3 is a significant penalty, as it
indicates a hardware utilization of only one third of
the observed capacity in the larger case. Similarly,
the factor of 1.5 means that the hardware delivers
two thirds of the realistic performance. While this is
a large performance drop, it is not unexpected, con-
sidering that the workload of case (2) is quite small
compared to case (1). On the other hand, even with
such reductions of performance, a GPU implemen-
tation of the KWN model may run faster than a cor-
responding CPU implementation, but this also de-
pends on the available hardware. For 2 the
performance drop is dramatic, and the GPU imple-
mentation is unlikely to provide benefits over a CPU
implementation. The diagonal at 2 corre-
sponds to about 4700 histogram bins per multipro-
cessor, or 146 per GPU core.

 INFORMATYKA W TECHNOLOGII MATERIAŁÓW

 – 137 –

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

7. CONCLUSION

We have demonstrated that KWN-type models
are well suited for parallelization on GPU hardware,
provided that the total number of histogram bins is
large enough, and that suitable algorithms are cho-
sen. In particular, the benefits are great when the
KWN microstructure model is coupled with a mac-
roscopic model processed by the CPU that does not
need the KWN output for every time step. In this
situation, if the KWN model is efficient enough that
it completes the time step equally fast as the macro-
scopic model, the microstructure can be included in
the simulation with negligible additional running
time.

To make the KWN fast enough, the cuSparse
based strategy gives the best performance over a
wide range of model configurations, including to-
wards the limit of small models. The hardware utili-
zation for small cases is reduced, and for our
graphics card, we identified 2 as a mini-
mum model size if a GPU implementation is consid-
ered. This corresponds to about 146 histogram bins
per GPU core. For smaller cases, the achieved per-
formance deteriorates rapidly.

In the limit of large cases, memory limitations
may prevent the use of the cuSparse solver, and the
other two strategies are good alternatives. However,
it may be important to examine their performance in
configurations that approaches the memory limita-
tions of the GPU. In our experiments the “node first”
strategy performs better in most cases, but the setup
kernel has a severe performance hit at the limit of
the available device memory. The “class first” strat-
egy has a more predictable performance in cases
with a large number of nodes, but is generally slow-
er due to the memory traffic pattern of the solver.

This work has been performed in the project
AluCaW with support from the Norwegian Research
Council, grant number 228466/O30, and with the
following partners: Benteler Aluminium Systems
Norway AS, Benteler Automotive Farsund AS, Im-
petus AFEA AS, Prediktor AS and the Institute for
Energy Technology.

REFERENCES

Bahrami, A., Miroux, A., Sietsma, J., 2012, An age-hardening
model for Al-Mg-Si alloys considering needle-shaped
precipitates, Metallurgical and Materials Transactions
A, 43, 4445-4453.

Chang, L.-W., Stratton, J. A., Kim, H.-S., Hwu, W.-M. W.,
2012, A scalable, numerically stable, high-performance
tridiagonal solver using GPUs, Proceedings of the Inter-

national Conference on High Performance Computing,
Networking, Storage and Analysis, Los Alamitos, CA,
USA, 27:1-27:11.

Fazeli, F., Sinclair, C. W., Bastow, T., 2008, The role of excess
vacancies on precipitation kinetics in an Al-Mg-Sc alloy,
Metallurgical and Materials Transactions A, 39, 2297-
2305.

Fjær, H. G., Myhr, O. R., Klokkehaug, S., Holm, E. J., 2001,
Advances in aluminum weld simulations applying
WeldSim, Proceedings of the 11th Intl. Conf. on Com-
puter Technology in Welding, eds, Siewert, T. A., Pol-
lock, C., Washington, 251-263.

Öhlund, C. E. I. C., den Ouden, D., Weidow, J., Thuvander, M.,
Offerman, S. E., 2015, Modelling the evolution of mul-
tiple hardening mechanisms during tempering of Fe–C–
Mn–Ti martensite, ISIJ International, 55, 884-893.

Öhlund, C. E. I. C., Weidow, J., Thuvander, M., Offerman,
S. E., 2014, Effect of Ti on evolution of microstructure
and hardness of martensitic Fe-C-Mn steel during tem-
pering, ISIJ International, 54, 2890-2899.

Khan, I. N., Starink, M. J., Yan, J. L., 2008, A model for precip-
itation kinetics and strengthening in Al–Cu–Mg alloys,
Materials Science and Engineering: A, 472, 66-74.

Myhr, O. R., Grong, Ø., 2000, Modelling of non-isothermal
transformations in alloys containing a particle distribu-
tion, Acta Materialia, 48, 1605-1615.

Myhr, O. R., Grong, Ø., Andersen, S. J., 2001, Modelling of the
age hardening behaviour of Al-Mg-Si alloys, Acta Mate-
rialia, 49, 65-75.

Myhr, O. R., Grong, Ø., Klokkehaug, S., Fjær, H. G., 2002,
Modelling of the microstructure and strength evolution
during ageing and welding of Al-Mg-Si alloys, Mathe-
matical Modelling of Weld Phenomena 6, ed, Cerjak, H.,
Graz, Austria, 337-364.

Myhr, O. R., Klokkehaug, S., Grong, Ø., Fjær, H. G., Kluken,
A. O., 1998, Modeling of microstructure evolution, re-
sidual stresses and distortions in 6082-T6 aluminum
weldments, Welding Journal, 77, 286S-292S.

Nicolas, M., Deschamps, A., 2003, Characterisation and model-
ling of precipitate evolution in an Al-Zn-Mg alloy dur-
ing non-isothermal heat treatments, Acta Materialia, 51,
6077-6094.

Den Ouden, D., Zhao, L., Vuik, C., Sietsma, J., Vermolen, F. J.,
2013, Modelling precipitate nucleation and growth with
multiple precipitate species under isothermal conditions:
Formulation and analysis, Computational Materials Sci-
ence, 79, 933-943.

NVIDIA Corporation, 2015, The API reference guide for cuS-
PARSE, DU-06709-001_v7.5.

Patankar, S., 1980, Numerical Heat Transfer and Fluid Flow,
Hemisphere Publ., Washington.

Perez, M., 2005, Gibbs-Thomson effects in phase transfor-
mations, Scripta Materialia, 52, 709-712.

Robson, J. D., Jones, M. J., Prangnell, P. B., 2003, Extension of
the N-model to predict competing homogeneous and
heterogeneous precipitation in Al-Sc alloys, Acta Mate-
rialia, 51, 1453-1468.

Simar, A., Bréchet, Y., de Meester, B., Denquin, A., Gallais, C.,
Pardoen, T., 2012, Integrated modeling of friction stir
welding of 6xxx series Al alloys: Process, microstruc-
ture and properties, Progress In Materials Science, 57,
95-183.

Simar, A., Bréchet, Y., de Meester, B., Denquin, A., Pardoen,
T., 2007, Sequential modeling of local precipitation,

C
O

M
P
U

TE
R
 M

E
T
H

O
D

S
 I
N

 M
A

T
E
R
IA

L
S
 S

C
IE

N
C

E

INFORMATYKA W TECHNOLOGII MATERIAŁÓW

– 138 –

strength and strain hardening in friction stir welds of an
aluminum alloy 6005A-T6, Acta Materialia, 55, 6133-
6143.

Wagner, R., Kampmann, R., 1991, Homogeneous second-phase
precipitation, Materials Science and Technology: Phase
Transformations in Materials, eds, Cahn, R. W., Haasen,
P., Kramer, E. J., VCH, Weinheim, 213-302.

Wu, L., Ferguson, W. G., 2009, Modelling of precipitation
hardening in casting aluminium alloys, Materials Sci-
ence Forum, 618-619, 203-206.

Yang, J., Enomoto, M., 2005, Numerical simulation of copper
precipitation during aging in deformed Fe-Cu alloys,
ISIJ International, 45, 1335-1344.

Zhang, Y., Cohen, J., Owens, J. D., 2010, Fast tridiagonal solv-
ers on the GPU, SIGPLAN Not., 45, 127-136.

IMPLEMENTACJA GPU NUMERYCZNEGO MODEL
KAMPMANNA-WAGNERA DLA WYDZIELEŃ

Streszczenie

Model Kampmanna-Wagnera dla wydzieleń (KWN) został

zaimplementowany za pomocą frameworku NVIDIA CUDA
w numerycznym programie dla kart graficznych (GPU). W pracy
przedyskutowano różne strategie implementacji i oceniono wy-
dajność poszczególnych rozwiązań. Badano dwa reprezentatywne
przypadki odpowiadające małemu i dużemu obciążeniu oblicze-
niowemu. Zauważono, że model jest odpowiedni dla implementa-
cji GPU, zakładając że obciążenie jest wystarczające aby proceso-
ry były obciążone i że wybrana jest odpowiednia strategia zrów-
noleglenia. Dla urządzeń użytych w pracy zarekomendowano
minimalne obciążenie 216 histogramów czyli dyskretyzowanych
cząstek (jako sumę wszystkich histogramów), co odpowiada 146
histogramów na jedną GPU. Kiedy model KWN jest połączony
z innymi obliczeniami prowadzonymi na GPU, poprawa wydaj-
ności może być uzyskana dzięki temu że model KWN wykorzy-
stuje tylko niewielką część czasu procesora. Ponadto, jeżeli model
KWN jest wykorzystany oddzielnie dla dużego zadania, imple-
mentacja GPU osiąga dobrą skalowalność i wydajność.

Received: June 24, 2016
Received in a revised form: September 20, 2016

Accepted: November 9, 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

