The advent of the deep learning evolutionary algorithm EvoDN2 and its recent applications

The advent of the deep learning evolutionary algorithm EvoDN2 and its recent applications

Nirupam Chakraborti

Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic.

DOI:

https://doi.org/10.7494/cmms.2025.2.1021

Abstract:

The evolutionary deep learning algorithm EvoDN2 is an emerging strategy for data-driven intelligent learning and many-objective optimisation capable of handling a large volume of noisy and non-linear data. This article provides the essential details of this algorithm and highlights a number of its recent applications.

Cite as:

Chakraborti, N. (2025). The advent of the deep learning evolutionary algorithm EvoDN2 and its recent applications. Computer Methods in Materials Science, 25(2), 41–55. https://doi.org/10.7494/cmms.2025.2.1021

Article (PDF):

Keywords:

Deep learning, Data-driven modelling, Many-objective optimization, Evolutionary algorithms, Genetic algorithm, Pareto optimality, Big data, Machine learning, EvoDN2

Publication dates:

Received: 19.05.2025, Accepted: 10.06.2025, Published: 02.07.2025

Publication type:

Review paper

References:

Al-Aghbari, M., & Gujarathi, A. M. (2023). Hybrid approach of using bi-objective genetic programming in well control optimization of waterflood management. Geoenergy Science and Engineering, 228, 211967. https://doi.org/10.1016/j.geoen.2023.211967

Annaratone, D. (2007). Pressure Vessel Design. Springer Berlin, Heidelberg.

Azeem, M., Ya, H. H., Alam, M. A., Kumar, M., Stabla, P., Smolnicki, M., Gemi, L., Khan, R., Ahmed, T., Ma, Q., Sadique, M. R., Mokhtar, A. A., & Mustapha, M. (2022). Application of filament winding technology in composite pressure vessels and challenges: a review. Journal of Energy Storage, 49, 103468. https://doi.org/10.1016/j.est.2021.103468

Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 46(5), 2727. https://doi.org/10.1103/PhysRevB.46.2727

Bastl, P., Chakraborti, N., & Valášek, M. (2023). Evolutionary algorithms in robot calibration. Materials and Manufacturing Processes, 38(16), 2051–2070. https://doi.org/10.1080/10426914.2023.2238368

Bernard, R., & Albright, S. (Eds.) (1993). Robot Calibration. Springer Dordrecht.

Bevilacqua, V., Nuzzolese, N., Mininno, E., & Iacca, G. (2016). Adaptive bi-objective genetic programming for data-driven system modeling. In D.-S. Huang, K. Han, A. Hussain (Eds.), Intelligent Computing Methodologies: 12th International Conference, ICIC 2016, Lanzhou, China, August 2–5, 2016, Proceedings, Part III (pp. 248–259). Springer Cham.

Canoeing at the 2024 Summer Olympics (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Canoeing_at_the_2024_Summer_Olympics

Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Computational Statistics, 11(3), e1460. https://doi.org/10.1002/wics.1460

Chakraborti, N. (2022). Data-driven evolutionary modeling in materials technology. CRC Press.

Chakraborti, N. (2024). Chapter 2.2.4. Data-driven evolutionary computation in blast furnace ironmaking. In S. Seetharaman, A. McLean, R. Guthrie, S. Seetharaman, H. Y. Sohn (Eds.), Treatise on Process Metallurgy (2nd ed., vol. 4, pp. 475–491). Elsevier. https://doi.org/10.1016/B978-0-323-85480-1.00026-9

Cheng, R., Jin, Y., Olhofer, M., & Sendhoff, B. (2016). A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 20(5), 773–791. https://doi.org/10.1109/TEVC.2016.2519378

Chugh, T., Sindhya, K., Miettinen, K., Hakanen, J., & Jin, Y. (2016). On constraint handling in surrogate-assisted evolutionary many-objective optimization. In J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, B. Paechter (Eds.), Parallel Problem Solving from Nature – PPSN XIV: 14th International Conference, Edinburgh, UK, September 17–21, 2016, Proceedings (pp. 214–224). Springer Cham. https://doi.org/10.1007/978-3-319-45823-6_2

Coello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Springer New York, NY. https://doi.org/10.1007/978-0-387-36797-2

Collet, P. (2007). Genetic programming. In J.-P. Rennard (Ed.), Handbook of Research on Nature Inspired Computing for Economics and Management (vol. 1, pp. 59–73). Idea Group Reference.

Datta, S. (2016). Materials Design Using Computational Intelligence Techniques. CRC Press.

Datta, S., & Chattopadhyay, P. P. (2013). Soft computing techniques in advancement of structural metals. International Materials Reviews, 58(8), 475–504. https://doi.org/10.1179/1743280413Y.0000000021

David, P., Mareš, T., & Chakraborti, N. (2023). Evolutionary multi-objective optimization of truss topology for additively manufactured components. Materials and Manufacturing Processes, 38(15), 1922–1931. https://doi.org/10.1080/10426914.2023.2196325

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons.

De Jong, K. A. (2006). Evolutionary Computation: A Unified Approach. MIT Press.

Dong, S., Liu, J., Jiang, X., Li, X., Gong, W., & Xu, H. (2025). Deep-transfer-learning network for recognizing splash of BOF steelmaking process with non-equilibrium samples. Metallurgical and Materials Transactions B, 56, 2807–2820.

Engel, E., & Dreizler, R. M. (2011). Density Functional Theory: An Advanced Course. Springer Berlin.

Erkoç, Ş. (1997). Empirical many-body potential energy functions used in computer simulations of condensed matter properties. Physics Reports, 278(2), 79–105. https://doi.org/10.1016/S0370-1573(96)00031-2

George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature Reviews Materials, 4(8), 515–534. https://doi.org/10.1038/s41578-019-0121-4

Ghalati, M. K., Zhang, J., El‐Fallah, G. M. A. M., Nenchev, B., & Dong, H. (2023). Toward learning steelmaking – A review on machine learning for basic oxygen furnace process. Materials Genome Engineering Advances, 1(1), e6. https://doi.org/10.1002/mgea.6

Ghosh, A., & Chatterjee, A. (2008). Ironmaking and Steelmaking: Theory and Practice. Prentice-Hall of India.

Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive Manufacturing Technologies. Springer Cham. https://doi.org/10.1007/978-3-030-56127-7

Giri, B. K., Hakanen, J., Miettinen, K., & Chakraborti, N. (2013a). Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Applied Soft Computing, 13(5), 2613–2623. https://doi.org/10.1016/j.asoc.2012.11.025

Giri, B. K., Pettersson, F., Saxén, H., & Chakraborti, N. (2013b). Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace. Materials and Manufacturing Processes, 28(7), 776–782. https://doi.org/10.1080/10426914.2013.763953

Glaeser, A., Selvaraj, V., Lee, S., Hwang, Y., Lee, K., Lee, N., Lee, S., & Min, S. (2021). Applications of deep learning for fault detection in industrial cold forging. International Journal of Production Research, 59(16), 4826–4835. https://doi.org/10.1080/00207543.2021.1891318

Glendenning, K., Wischgoll, T., Harris, J., Vickery, R., & Blaha, L. (2016). Parameter space visualization for large-scale datasets using parallel coordinate plots. Electronic Imaging, 28, art00015. https://doi.org/10.2352/ISSN.2470-1173.2016.1.VDA-490

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company.

Guha, R., Suresh, A., DeFrain, J., & Deb, K. (2023). Virtual metrology in long batch processes using machine learning. Materials and Manufacturing Processes, 38(15), 1997–2008. https://doi.org/10.1080/10426914.2023.2220487

He, M., & He, D. (2017). Deep learning based approach for bearing fault diagnosis. IEEE Transactions on Industry Applications, 53(3), 3057–3065. https://doi.org/10.1109/TIA.2017.2661250

Hu, Z., Wang, Y., Qi, H., She, Y., Lin, Z., Hu, Z., Hua, L., Wu, M., & Qin, X. (2025). Real-time 3D temperature field reconstruction for aluminum alloy forging die using Swin Transformer integrated deep learning framework. Applied Thermal Engineering, 260, 125033. https://doi.org/10.1016/j.applthermaleng.2024.125033

Iacca, G., & Mininno, E. (2016). Introducing Kimeme, a novel platform for multi-disciplinary multi-objective optimization. In F. Rossi, F. Mavelli, P. Stano, D. C. (Eds.), Italian Workshop on Artificial Life and Evolutionary Computation. Advances in Artificial Life, Evolutionary Computation and Systems Chemistry 10th Italian Workshop, WIVACE 2015, Bari, Italy, September 22–25, 2015, Revised Selected Papers (pp. 40–52). Springer Cham. https://doi.org/10.1007/978-3-319-32695-5_4

Kim, K., Seo, B., Rhee, S.-H., Lee, S., & Woo, S. S. (2019). Deep learning for blast furnaces: Skip-dense layers deep learning model to predict the remaining time to close tap-holes for blast furnaces. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 2733–2741). Association for Computing Machinery. https://doi.org/10.1145/3357384.3357803

Koza, J. R. (1990). Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems. Stanford University, Department of Computer Science.

Kropík, B., Mareš, T., Malá, A., Doubrava, K., Padovec, Z., Fošnarič, M., & Chakraborti, N. (2025). Multi-objective optimization of composite kayak paddle shaft through evolutionary deep learning. Materials and Manufacturing Processes, 40(7), 893–901. https://doi.org/10.1080/10426914.2025.2476480

Kröse, B., & Smagt, P., van der (1996). An Introduction to Neural Networks (8th ed.). The University of Amsterdam. https://ia801305.us.archive.org/34/items/Krose_Ben_and_Patrick_van_der_Smagt_-_An_Introduction_to_Neural_Networks/Krose_Ben_and_Patrick_van_der_Smagt_-_An_Introduction_to_Neural_Networks.pdf

Li, Q., Wang, Z., Wang, S., Li, M., Lei, H., & Zou, Z. (2022). A deep learning-based diagnosis model driven by tuyere images big data for iron‐making blast furnaces. Steel Research International, 93(8), 2100826. https://doi.org/10.1002/srin.202100826

Li, X. (2003). A real-coded predator-prey genetic algorithm for multiobjective optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, L. Thiele, K. Deb (Eds.), Evolutionary Multi-Criterion Optimization: Second International Conference, EMO 2003, Faro, Portugal, April 8–11, 2003, Proceedings (pp. 207–221). Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_15

Mahanta, B. K., & Chakraborti, N. (2021). Evolutionary data driven modelling and many objective optimization of non linear noisy data in the blast furnace iron making process. Computer Methods in Materials Science, 21(3), 163–175. https://doi.org/10.7494/cmms.2021.3.0733

Mahanta, B. K., Gupta, P., Mohanty, I., Roy, T. K., & Chakraborti, N. (2023). Evolutionary data driven modeling and tri-objective optimization for noisy BOF steel making data. Digital Chemical Engineering, 7, 100094. https://doi.org/10.1016/j.dche.2023.100094

Malá, A. (2024). Multi-objective Optimisation of Stacking Sequence in Composite Frame Structures [Doctoral dissertation, Czech Technical University in Prague]. https://dspace.cvut.cz/handle/10467/119692

Malá, A., Padovec, Z., Mareš, T., & Chakraborti, N. (2023). A method for designing filament-wound composite frame structures using a data-driven evolutionary optimisation algorithm EvoDN2. Philosophical Magazine Letters, 103(1), 2272975. https://doi.org/10.1080/09500839.2023.2272975

Malá, A., Padovec, Z., Mareš, T., & Chakraborti, N. (2024a). The stacking sequence optimisation of a filament wound composite bicycle frame using the data-driven evolutionary algorithm EvoDN2. Philosophical Magazine Letters, 104(1), 2347899. https://doi.org/10.1080/09500839.2024.2347899

Malá, A., Padovec, Z., Mareš, T., & Chakraborti, N. (2024b). Shallow and deep evolutionary neural networks applications in solid mechanics. In J. Valadi, K. P. Singh, M. Ojha, P. Siarry(Eds.), Advanced Machine Learning with Evolutionary and Metaheuristic Techniques (pp. 257–296). Springer Singapore. https://doi.org/10.1007/978-981-99-9718-3_11

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Springer New York, NY. https://doi.org/10.1007/978-1-4615-5563-6

Mothilal, M., & Kumar, A. (2025). Predictive modeling of ultimate tensile strength in dissimilar friction stir welded aluminum alloys via machine learning approach. Philosophical Magazine Letters, 105(1). https://doi.org/10.1080/09500839.2025.2472669

Nayak, D. R., Sahu, S. K., Mohammed, J. (2014). A Cellular Automata based Optimal Edge Detection Technique using Twenty-Five Neighborhood Model. ArXiv. https://doi.org/10.48550/arXiv.1402.1348

Paszkowicz, W. (2023). Increasing importance of genetic algorithms in science and technology: linear trends over the period from year 1989 to 2022. Materials and Manufacturing Processes, 38(16), 2107–2126. https://doi.org/10.1080/10426914.2023.2238056

Peters, S. T. (Ed.) (2011). Composite Filament Winding. ASM International.

Pettersson, F., Chakraborti, N., & Saxén, H. (2007). A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Applied Soft Computing, 7(1), 387–397. https://doi.org/10.1016/j.asoc.2005.09.001

Rana, R., Cordova-Tapia, E., Jimenez, J. A., Morales-Rivas, L., & Garcia-Mateo, C. (2024). Design of carbide free bainitic steels for hot rolling practices. Philosophical Magazine Letters, 104(1). https://doi.org/10.1080/09500839.2024.2322552

Rapaport, D. C. (2004). The Art of Molecular Dynamics Simulation (2nd ed.). Cambridge University Press.

Rennard, J.-P. (Ed.) (2006). Handbook of Research on Nature-Inspired Computing for Economics and Management. IGI Global.

Richards, R. M., & Ciobanu, C. V. (2024). Can Hume-Rothery rules predict single-phase high-entropy rocksalt oxide phases?. Philosophical Magazine Letters, 104(1), 2433726. https://doi.org/10.1080/09500839.2024.2433726

Roy, S., & Chakraborti, N. (2020). Development of an evolutionary deep neural net for materials research. In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings (pp. 817–828). Springer Cham. https://doi.org/10.1007/978-3-030-36296-6_76

Roy, S., & Chakraborti, N. (2022). Novel strategies for data-driven evolutionary optimization. In T. Tuovinen, J. Periaux, P. (Eds.), Neittaanmäki Computational Sciences and Artificial Intelligence in Industry: New Digital Technologies for Solving Future Societal and Economical Challenges (pp. 11–25). Springer Cham. https://doi.org/10.1007/978-3-030-70787-3_2

Roy, S., Saini, B. S., Chakrabarti, D., & Chakraborti, N. (2020). Mechanical properties of micro-alloyed steels studied using a evolutionary deep neural network. Materials and Manufacturing Processes, 35(6), 611–624. https://doi.org/10.1080/10426914.2019.1660786

Roy, S., Dutta, A., & Chakraborti, N. (2021a). A novel method of determining interatomic potential for Al and Al-Li alloys and studying strength of Al-Al3Li interphase using evolutionary algorithms. Computational Materials Science, 190, 110258. https://doi.org/10.1016/j.commatsci.2020.110258

Roy, S., Dutta, A., & Chakraborti, N. (2021b). MEAM potential for Al and Al-Li alloys developed by Roy, Dutta, and Chakraborti (2021) v000. https://openkim.org/id/MEAM_LAMMPS_RoyDuttaChakraborti_2021_AlLi__MO_971738391444_000

Roy, S., Dürholt, J. P., Asche, T. S., Zipoli, F., & Gómez-Bombarelli, R. (2024). Learning a reactive potential for silica-water through uncertainty attribution. Nature Communications, 15(1), 6030. https://doi.org/10.1038/s41467-024-50407-9

Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. In 2013 International Conference on Collaboration Technologies and Systems (CTS) (pp. 42–47). IEEE. https://doi.org/10.1109/CTS.2013.6567202

Saini, B. S., Chakrabarti, D., Chakraborti, N., Shavazipour, B., & Miettinen, K. (2023). Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework. Engineering Applications of Artificial Intelligence, 120, 105918. https://doi.org/10.1016/j.engappai.2023.105918

Samek, W., Montavon, G., Lapuschkin, S., Anders, Ch. J., & Müller, K.-R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247–278. https://doi.org/10.1109/JPROC.2021.3060483

Sarkar, R., Singh, S. B., & Dutta, A. (2024). Assessment of Bayesian guidance strategy to develop bake-hardening ferritic steel. Philosophical Magazine Letters, 104(1), 2366219. https://doi.org/10.1080/09500839.2024.2366219

Saxén, H., & Pettersson, F. (2006). Method for the selection of inputs and structure of feedforward neural networks. Computers & Chemical Engineering, 30(6–7), 1038–1045. https://doi.org/10.1016/j.compchemeng.2006.01.007

Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200

Simkus, A., Navickas, V., Vveinhardt, J., & Alekrinskis, A. (2020). The technical parameters of the creation process for kayak paddles as a sport product. Annals of Applied Sport Science, 8(4), e845. https://doi.org/10.29252/aassjournal.845

Singh, S. K., Mahanta, B. K., Rawat, P., & Kumar, S. (2024). Machine learning-assisted design of high-entropy alloys for optimal strength and ductility. Journal of Alloys and Compounds, 1007, 176282. https://doi.org/10.1016/j.jallcom.2024.176282

Sitko, M., Pietrzyk, M., & Madej, L. (2016). Time and length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method. Journal of Computational Science, 16, 98–113. https://doi.org/10.1016/j.jocs.2016.05.007

Smith, J. L. (2020). Advances in neural networks and potential for their application to steel metallurgy. Materials Science and Technology, 36(17), 1805–1819. https://doi.org/10.1080/02670836.2020.1839206

Smyrnov, M., Funcke, F., & Kabliman, E. (2024). Prediction of material toughness using ensemble learning and data augmentation. Philosophical Magazine Letters, 104(1). https://doi.org/10.1080/09500839.2024.2372497

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P. J., in ‘t, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, Ch., & Plimpton, S. J. (2022). LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171

Vashistha, S., Mahanta, B. K., Singh, V. K., & Singh, S. K. (2023). Machine learning assisted optimization of tribological parameters of Al–Co–Cr–Fe–Ni high-entropy alloy. Materials and Manufacturing Processes, 38(16), 2093–2106. https://doi.org/10.1080/10426914.2023.2219332

Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2023). Optimization of dome shape for filament wound pressure vessels using data-driven evolutionary algorithms. Materials and Manufacturing Processes, 38(15), 1899–1910. https://doi.org/10.1080/10426914.2023.2187823

Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2024a). Analysis and optimization of junction between cylindrical part and end dome of filament wound pressure vessels using data driven evolutionary algorithms. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(6), 2348–2361. https://doi.org/10.1177/09544062231191319

Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2024b). Complex design and analysis of filament wound composite pressure vessels using data driven evolutionary algorithms. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089241238410

Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2025). Analysis of thermoelastic stresses in filament wound composite pressure vessels using evolutionary deep learning and many-objective optimisation. Philosophical Magazine Letters, 105(1), 2476499. https://doi.org/10.1080/09500839.2025.2476499

Vuolio, T., Visuri, V. V., Sorsa, A., Paananen, T., Tuomikoski, S., & Fabritius, T. (2023). Machine learning assisted identification of grey-box hot metal desulfurization model. Materials and Manufacturing Processes, 38(15), 1983–1996. https://doi.org/10.1080/10426914.2023.2195916

Wolfram, S. (1983). Cellular Automata. Los Alamos Science. https://content.wolfram.com/sw-publications/2020/07/cellular-automata.pdf

Wu, F., Zhang, J., Falch, K. V., & Mirihanage, W. (2024). Machine-learning-assisted analysis of highly transient X-ray imaging sequences of weld pools. Philosophical Magazine Letters, 104(1). https://doi.org/10.1080/09500839.2024.2388159

Xu, Y., Li, Z., Wang, S., Li, W., Sarkodie-Gyan, T., & Feng, S. (2021). A hybrid deep-learning model for fault diagnosis of rolling bearings. Measurement, 169, 108502. https://doi.org/10.1016/j.measurement.2020.108502

Yang, H.-Ch., Zheng, Ch.-H., Chen, Y.-Z., Tseng, Ch.-M., & Kao, Y.-Ch. (2018). Intelligent diagnosis of forging die based on deep learning. In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE) (pp. 199–204). IEEE. https://doi.org/10.1109/COASE.2018.8560420

Zhang, X., Kano, M., & Matsuzaki, S. (2019). A comparative study of deep and shallow predictive techniques for hot metal temperature prediction in blast furnace ironmaking. Computers & Chemical Engineering130, 106575. https://doi.org/10.1016/j.compchemeng.2019.106575

Zhou, G., Liu, W., Yu, Y., & Saxén, H. (2025). Advancing blast furnace thermal state prediction: A data‐driven approach using thermocouple integration and multimodal modeling. Steel Research International, 2400896. https://doi.org/10.1002/srin.202400896 [in print].