A Digital Twin for temperature prediction in the laser hardening process of NC10 steel

A Digital Twin for temperature prediction in the laser hardening process of NC10 steel

Piotr Lacki*, Anna Derlatka, Michał Lacki, Kuba Lachs

Czestochowa University of Technology, J.H. Dabrowskiego 69, 42-201 Czestochowa, Poland.

DOI:

https://doi.org/10.7494/cmms.2026.1.1023

Abstract:

In this study, Artificial Neural Networks (ANN) were created to develop a Digital Twin (DT) for temperature prediction in the laser hardening process of NC10 steel. The ANN were trained to predict temperature on the top layer during the laser hardening process of NC10 steel samples with different thicknesses and with various laser power and laser scanning speeds. The prediction developed during the project work was based on a parametric numerical model of the laser hardening process for a sample of NC 10 steel, using the Finite Element Method (FEM) within the ADINA software. Numerical simulations enabled a detailed analysis of the temperature produced on the surface of each sample, as well as a visualization of the structural changes made to the sample according to the laser hardening process. It is crucial to create data that reflects reality as closely as possible to assess the best setting for each process. A well created DT allows to make automatically important changes along laser hardening process. To obtain a set of the most efficient parameters for the desired result, Genetic Algorithms (GA) were integrated with the developed ANN. As a result, the authors developed an effective and efficient tool to predict the temperature produced along the laser hardening process.

Cite as:

Lacki, P., Derlatka, A., Lacki, M., & Lachs, K. (2025). A Digital Twin for temperature prediction in the laser hardening process of NC10 steel. Computer Methods in Materials Science, 26(1), – . https://doi.org/10.7494/cmms.2026.1.1023

Article (PDF):

Accepted Manuscript – final pdf version coming soon

Keywords:

Digital Twin, Artificial Neural Networks, Finite Element Method, Laser hardening

Publication dates:

Received: 30.05.2025, Accepted: 15.09.2025, Published: XX.XX.2025

References:

Baronti, L., Michalek, A., Castellani, M., Penchev, P., See, T. L., & Dimov, S. (2022). Artificial neural network tools for predicting the functional response of ultrafast laser textured/structured surfaces. The International Journal of Advanced Manufacturing Technology, 119, 3501–3516. https://doi.org/10.1007/s00170-021-08589-9

Berkowski, L., & Borowski, J. (2007). Wpływ struktury na skutki azotowania chromowych stali ledeburytycznych. Część II. Warunki obróbki cieplnej stali NC10 [The influence of structure on the results of the nitriding of ledeburitic chromium steels. Part II. Heat treatment conditions of NC10 steel]. Obróbka Plastyczna Metali, 1, 23–33.

Chen, G., Zhu, J., Zhao, Y., Hao, Y., Yang, Ch., & Shi, Q. (2021). Digital twin modeling for temperature field during friction stir welding. Journal of Manufacturing Processes, 64, 898–906. https://doi.org/10.1016/j.jmapro.2021.01.042

Czupryński, A., Janicki, D., Górka, J., Grabowski, A., Wyględacz, B., Matus, K., & Karski, W. (2022). High-power diode laser surface transformation hardening of ferrous alloys. Materials, 15(5), 1915. https://doi.org/10.3390/ma15051915

Derlatka, A., & Lacki, P. (2024). Experimental study and numerical simulation of cellular I-beam manufactured using refill friction stir spot welding technology. Thin-Walled Structures, 200, 111890. https://doi.org/10.1016/j.tws.2024.111890

Hegedűs‐Kuti, J., Szőlősi, J., Birosz, M. T., Csobán, A., Popa‐Müller, I., & Andó, M. (2025). Extending the welding seams detection as preparation towards the digital twin technology. IET Collaborative Intelligent Manufacturing, 7(1), https://doi.org/10.1049/cim2.70027

Lacki, P., Derlatka, A., Więckowski, W., & Adamus, J. (2024). Development of FSW process parameters for lap joints made of thin 7075 aluminum alloy sheets. Materials, 17(3), 672. https://doi.org/10.3390/ma17030672

Lesyk, D. A., Martinez, S., Mordyuk, B. N., Dzhemelinskyi, V. V., Lamikiz, A., & Prokopenko, G. I. (2019). Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045. Optics & Laser Technology, 111, 424–438. https://doi.org/10.1016/j.optlastec.2018.09.030

Lesyk, D., Hruska, M., Mordyuk, B., Kochmanski, P., & Powalka, B. (2023). Robot-assisted 3D laser surface hardening of medium-carbon steel: Surface roughness parameters and hardness. In I. Karabegovic, A. Kovačević, S. Mandzuka (Eds.), New Technologies, Development and Application VI (vol. 1, pp. 45–53, Lecture Notes in Networks and Systems, vol. 687). Springer Cham. https://doi.org/10.1007/978-3-031-31066-9_5

Lv, T.-L., Xia, Y.-J., Murugan, S. P., Okigami, F., Ghassemi-Armaki, H., Carlson, B. E., & Li, Y. (2025). Multi-physical process simulation of resistance spot welding available for synthetic data generation. Journal of Manufacturing Processes, 141, 709–724. https://doi.org/10.1016/j.jmapro.2025.03.024

Łach, Ł. (2024). Recent advances in laser surface hardening: Techniques, modeling approaches, and industrial applications. Crystals, 14(8), 726. https://doi.org/10.3390/cryst14080726

Mahrle, A., & Beyer, E. (2019). Theoretical evaluation of radiation pressure magnitudes and effects in laser material processing. Physica Scripta, 94, 075004. https://doi.org/10.1088/1402-4896/ab04c3

Mandolfino, C., Obeidi, M., Lertora, E., & Brabazon, D. (2020). Comparing the adhesion strength of 316L stainless steel joints after laser surface texturing by CO2 and fiber lasers. The International Journal of Advanced Manufacturing Technology, 109, 1059–1069. https://doi.org/10.1007/s00170-020-05639-6

Metzner, D., Olbrich, M., Lickschat, P., Horn, A., & Weißmantel, S. (2020). Experimental and theoretical determination of the effective penetration depth of ultrafast laser radiation in stainless steel. Lasers in Manufacturing and Materials Processing, 7, 478–495. https://doi.org/10.1007/s40516-020-00129-9

Mu, H., He, F., Yuan, L., Commins, P., Wang, H., & Pan, Z. (2023). Toward a smart wire arc additive manufacturing system: A review on current developments and a framework of digital twin. Journal of Manufacturing Systems, 67, 174–189. https://doi.org/10.1016/j.jmsy.2023.01.012

Mu, H., He, F., Yuan, L., Commins, P., Xu, J., & Pan, Z. (2025). High-frequency real-time bead geometry measurement in wire arc additive manufacturing based on welding signals. IEEE Transactions on Industrial Informatics, 21(3), 2630–2639. https://doi.org/10.1109/TII.2024.3514121

Nayak, S. S., Iqbal, M. P., Krishna, A., Mishra, D., Pal, S. K., & Bhogineni, S. K. (in press). A hybrid digital twin for monitoring and controlling weld quality in friction stir welding. International Journal of Computer Integrated Manufacturing. https://doi.org/10.1080/0951192X.2025.2482227

Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of Digital Twin in CPS-based production systems. Procedia Manufacturing, 11, 939–948. https://doi.org/10.1016/j.promfg.2017.07.198

Pakieła, W., Tanski, T., Brytan, Z., Chladek, G., & Pakieła, K. (2020). The impact of laser surface treatment on the microstructure, wear resistance and hardness of the AlMg5 aluminum alloy. Applied Physics A, 126, 231. https://doi.org/10.1007/s00339-020-3350-x

Pawłowicz, W. (2014). Hardening with high-power diode laser. Welding International, 28(9), 679–682. https://doi.org/10.1080/09507116.2012.753225

Rauch, Ł., Bzowski, K., Szeliga, D., & Pietrzyk, M. (2020). Development and application of the statistically similar representative volume element for numerical modelling of multiphase materials. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, J. Teixeira (Eds.), Computational Science – ICCS 2020. 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings (part VI, pp. 389–402, Lecture Notes in Computer Science, vol. 12142). Springer Cham. https://doi.org/10.1007/978-3-030-50433-5_30

Schüßler, P., Damon, J., Mühl, F., Dietrich, S., & Schulze, V. (2023). Laser surface hardening: A simulative study of tempering mechanisms on hardness and residual stress. Computational Materials Science, 221, 112079. https://doi.org/10.1016/j.commatsci.2023.112079

Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital Twins: State of the art theory and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383. https://doi.org/10.1016/j.jii.2022.100383

Szczucka-Lasota, B., Uściłowska, A., Węgrzyn, T., & Węgrzyn-Wolska, K. (2025). Aluminum busducts welding with micro-jet cooling-process parameters estimation by numerical simulations with MFS. Continuum Mechanics and Thermodynamics, 37, 14. https://doi.org/10.1007/s00161-024-01351-y