Polycrystalline plasticity analysis of cyclic loading and stress relaxation in 316H austenitic stainless steel
Sadik Sefa Acar![]()
, Tuncay Yalçinkaya![]()
*
Department of Aerospace Engineering, Middle East Technical University, Ankara, 06800, Turkiye.
*corresponding author
DOI:
https://doi.org/10.7494/cmms.2025.3.1025
Abstract:
The mechanical behavior of 316H austenitic stainless steel is investigated in this study under cyclic strain-controlled loading with and without hold periods at elevated temperatures. Understanding the low-cycle fatigue (LCF) and fatigue-creep interaction (FCI) characteristics is essential for ensuring the structural performance and safety of reactor components, particularly under conditions typical of modular and generation IV reactors. The new generation of nuclear power plants require more resistant and durable materials as the operating environments impose significantly higher demands, including increased neutron irradiation levels and elevated operating temperatures, leading to accelerated material degradation. A combined isotropic-kinematic hardening model within a crystal plasticity framework is employed to capture the cyclic and time-dependent mechanical response of the material. Model parameters are calibrated by fitting cyclic loading simulation results to experimental data at 550°C using polycrystalline representative volume elements (RVE). Strain-controlled uniaxial loading simulations are performed to analyze peak stress evolution throughout cyclic loading and stress relaxation behavior during strain-hold periods. The RVE simulation results are in strong agreement with experiments under LCF loading. For the loading with strain-holds, stress relaxation during hold periods exhibits two distinct stages: an initial rapid decay followed by a steady decline, both of which are captured in simulations. Beyond the macroscopic response, analyses reveal the heterogeneous evolution of field variables at the microstructural level, as strain hardening during loading and stress relaxation during hold periods varied across grains due to their crystal orientations and interactions with neighboring grains. These findings enhance the understanding of high-temperature mechanical behavior at both macroscopic and microstructural scales, contributing to the efforts for the design, operation, and life extension of nuclear reactor components.
Cite as:
Acar, S.S., & Yalçinkaya, T. (2025). Polycrystalline plasticity analysis of cyclic loading and stress relaxation in 316H austenitic stainless steel. Computer Methods in Materials Science, 25(3), 5-18. https://doi.org/10.7494/cmms.2025.3.1025
Article (PDF):
Keywords:
Stress relaxation, Peak stress, Strain hold, Stainless steel, Crystal plasticity, Back-stress, DAMASK
Publication dates:
Received: 24.07.2025, Accepted: 13.10.2025, Published: 21.11.2025
Publication type:
Original scientific paper
References:
Acar, S. S., & Yalçinkaya, T. (2025a). Crystal plasticity modelling of time-dependent strain accumulation of stainless steel at room temperature. Philosophical Magazine, 1–21. https://doi.org/10.1080/14786435.2025.2536601
Acar, S. S., & Yalçinkaya, T. (2025b). Modeling of the stress path-dependent strain ratcheting behaviour of 304L stainless steel through crystal plasticity frameworks. Metals and Materials International, 31(9), 2525–2540. https://doi.org/10.1007/s12540-025-01907-w
Acar, S. S., Bulut, O., & Yalçinkaya, T. (2022). Crystal plasticity modeling of additively manufactured metallic microstructures. Procedia Structural Integrity, 35, 219–227. https://doi.org/10.1016/j.prostr.2021.12.068
AFCEN – Association Francaise pour les Regles de Conception et de Construction des Materiels des Chaudieres Electro-Nucleaires (1985). Design and Construction Rules for Mechanical components of FBR islands: RCC-MR (t. 1, vol. Z: Technical appendix A3).
Agius, D., Al Mamun, A., Simpson, C. A., Truman, C., Wang, Y., Mostafavi, M., & Knowles, D. (2020). Microstructure-informed, predictive crystal plasticity finite element model of fatigue-dwells. Computational Materials Science, 183, 109823. https://doi.org/10.1016/j.commatsci.2020.109823
Allen, Ch., Coules, H., Truman, Ch. E., Mokhtarishirazabad, M., McKendrey, S., Billings, A., Liu, C., Davies, C. M., & Kelleher, J. (2025). Prediction of multiaxial deformation of 316H stainless steel at high temperature using a multiscale crystal plasticity approach. Materials Science and Engineering: A, 931, 148160. https://doi.org/10.1016/j.msea.2025.148160
Aydiner, I. U., Tatli, B., & Yalçinkaya, T. (2024). Investigation of failure mechanisms in dual-phase steels through cohesive zone modeling and crystal plasticity frameworks. International Journal of Plasticity, 174, 103898. https://doi.org/10.1016/j.ijplas.2024.103898
Chen, B., Smith, D. J., Flewitt, P. E. J., & Spindler, M. W. (2011). Constitutive equations that describe creep stress relaxation for 316H stainless steel at 550°C. Materials at High Temperatures, 28(3), 155–164. https://doi.org/10.3184/096034011X13119593388654
Coules, H. E., Nneji, S. O., James, J. A., Kabra, S., Hu, J. N., & Wang, Y. (2022). Full-tensor Measurement of Multiaxial Creep Stress Relaxation in Type 316H Stainless Steel. Experimental Mechanics, 62(1), 19–33. https://doi.org/10.1007/s11340-021-00755-0
Geus, T. W. J., de, Vondřejc, J., Zeman, J., Peerlings, R. H. J., & Geers, M. G. D. (2017). Finite strain FFT-based non-linear solvers made simple. Computer Methods in Applied Mechanics and Engineering, 318, 412–430. https://doi.org/10.1016/j.cma.2016.12.032
Du, R., Song, H., Gao, F., Mo, Y., Yan, Z., Zhuang, Z., Liu, X., & Wei, Y. (2023). Machine learning informed visco-plastic model for the cyclic relaxation of 316H stainless steel at 550° C. International Journal of Plasticity, 170, 103743. https://doi.org/10.1016/j.ijplas.2023.103743
Eisenlohr, P., Diehl, M., Lebensohn, R. A., & Roters, F. (2013). A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity, 46, 37–53. https://doi.org/10.1016/j.ijplas.2012.09.012
Erinosho, T. O., Abburi Venkata, K., Mostafavi, M., Knowles, D. M., & Truman, C. E. (2018). Influence of prior cyclic plasticity on creep deformation using crystal plasticity modelling. International Journal of Solids and Structures, 139–140, 129–137. https://doi.org/10.1016/j.ijsolstr.2018.01.028
Gredis, A. (2022). Environmental effects on the integrity of type 316H stainless steel of an AGR coolant [Doctor’s thesis, University of Manchester]. National Archive of PhD Theses. https://doi.org/10.12681/eadd/54604
Hormozi, R., Biglari, F., & Nikbin, K. (2015). Experimental study of type 316 stainless steel failure under LCF/TMF loading conditions. International Journal of Fatigue, 75, 153–169. https://doi.org/10.1016/j.ijfatigue.2015.02.014
Hu, C., Xu, L., Zhao, L., Han, Y., Song, K., Luo, X., & Li, C. (2023). Investigation of low cycle fatigue crack propagation behavior of 316H steel at 550℃ based on cyclic response and damage accumulation: experiment and modelling. International Journal of Plasticity, 167, 103661. https://doi.org/10.1016/j.ijplas.2023.103661
Hu, J., & Cocks, A. C. F. (2016). A multi-scale self-consistent model describing the lattice deformation in austenitic stainless steels. International Journal of Solids and Structures, 78–79, 21–37. https://doi.org/10.1016/j.ijsolstr.2015.09.021
Hughes, D. G. J., Chevalier, M., & Dean, D. W. (2019). Recent developments in the R5 procedures for assessing the high temperature response of structures. In ASME 2019 Pressure Vessels & Piping Conference (vol. 6A: Materials and Fabrication). https://doi.org/10.1115/PVP2019-93838
Karjalainen, L. P., & Perttula, J. (1996). Characteristics of static and metadynamic recrystallization and strain accumulation in hot-deformed austenite as revealed by the stress relaxation method. ISIJ International, 36(6), 729–736. https://doi.org/10.2355/isijinternational.36.729
Nasser, M., Davies, C. M., & Nikbin, K. (2016). The influence of AGR gas carburisation on the creep and fracture properties of type 316H stainless steel. In ASME 2016 Pressure Vessels and Piping Conference (vol. 5: High-Pressure Technology). https://doi.org/10.1115/PVP2016-63076
Pan, Z., Li, Y., Song, Y., Shen, R., Xie, Y., Jin, W., Zhang, K., & Gao, Z. (2022). Effects of strain rate on the tensile and creep-fatigue properties of 316H stainless steel. International Journal of Pressure Vessels and Piping, 200, 104774. https://doi.org/10.1016/j.ijpvp.2022.104774
Petkov, M. P., Hu, J., & Cocks, A. C. F. (2019). Self-consistent modelling of cyclic loading and relaxation in austenitic 316H stainless steel. Philosophical Magazine, 99(7), 789–834. https://doi.org/10.1080/14786435.2018.1556407
Petkov, M. P., Chevalier, M., Dean, D., & Cocks, A. C. F. (2021). Creep-fatigue interactions in type 316H under typical high-temperature power plant operating conditions. International Journal of Pressure Vessels and Piping, 194(B), 104500. https://doi.org/10.1016/j.ijpvp.2021.104500
Phan, V.-T., Messner, M. C., & Sham, T.-L. (2019). A unified engineering inelastic model for 316H stainless steel. In ASME 2019 Pressure Vessels and Piping Conference (vol. 1: Codes and Standards). https://doi.org/10.1115/PVP2019-93641
Quey, R., Dawson, P. R., & Barbe, F. (2011). Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering, 200(17–20), 1729–1745. https://doi.org/10.1016/j.cma.2011.01.002
Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D. D., Diehl, M., & Raabe, D. (2012). DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM, 3, 3–10. https://doi.org/10.1016/j.piutam.2012.03.001
Roters, F., Diehl, M., Shanthraj, P., Eisenlohr, P., Reuber, C., Wong, S. L., Maiti, T., Ebrahimi, A., Hochrainer, T., Fabritius, H.-O., Nikolov, S., Friák, M., Fujita, N., Grilli, N., Janssens, K. G. F., Jia, N., Kok, P. J. J., Ma, D., Meier, F., … Raabe, D. (2019). DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 158, 420–478. https://doi.org/10.1016/j.commatsci.2018.04.030
Shanthraj, P., Eisenlohr, P., Diehl, M., & Roters, F. (2015). Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity, 66, 31–45. https://doi.org/10.1016/j.ijplas.2014.02.006
Tatli, B., & Yalçinkaya, T. (2025). Modelling of Hydrogen-Induced Failure in Polycrystalline Materials through a Strain Gradient Crystal Plasticity Framework. Procedia Structural Integrity, 68, 1140–1146. https://doi.org/10.1016/j.prostr.2025.06.179
Wang, H., Clausen, B., Tomé, C. N., & Wu, P. D. (2013). Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension. Acta Materialia, 61(4), 1179–1188. https://doi.org/10.1016/j.actamat.2012.10.027
Wang, Y. Q., Spindler, M. W., Truman, C. E., & Smith, D. J. (2016). Critical analysis of the prediction of stress relaxation from forward creep of Type 316H austenitic stainless steel. Materials & Design, 95, 656–668. https://doi.org/10.1016/j.matdes.2016.01.118
Wollmershauser, J. A., Clausen, B., & Agnew, S. R. (2012). A slip system-based kinematic hardening model application to in situ neutron diffraction of cyclic deformation of austenitic stainless steel. International Journal of Fatigue, 36(1), 181–193. https://doi.org/10.1016/j.ijfatigue.2011.07.008
Xu, L., Bao, F., Zhao, L., Han, Y., Jing, H., Yu, H., & Gong, X. (2021). Characterizing microstructural evolution and low cycle fatigue behavior of 316H austenitic steel at high-temperatures. Journal of Nuclear Materials, 546, 152758. https://doi.org/10.1016/j.jnucmat.2020.152758
Xu, L., Li, C., Zhao, L., Han, Y., & Hao, K. (2022). Investigation on the creep-fatigue crack growth behavior of 316H welded joints in sodium-cooled fast reactors. Engineering Failure Analysis, 141, 106684. https://doi.org/10.1016/j.engfailanal.2022.106684
Yalçinkaya, T., Çakmak, S. O., & Tekoğlu, C. (2021). A crystal plasticity based finite element framework for RVE calculations of two-phase materials: Void nucleation in dual-phase steels. Finite Elements in Analysis and Design, 187, 103510. https://doi.org/10.1016/j.finel.2020.103510
Zhao, Z., & Chen, X. (2020). Effect of cyclic softening and stress relaxation on fatigue behavior of 2.25Cr1Mo0.25V steel under strain-controlled fatigue-creep interaction at 728 K. International Journal of Fatigue, 140, 105848. https://doi.org/10.1016/j.ijfatigue.2020.105848
