The advent of the deep learning evolutionary algorithm EvoDN2 and its recent applications
Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic.
DOI:
https://doi.org/10.7494/cmms.2025.2.1021
Abstract:
The evolutionary deep learning algorithm EvoDN2 is an emerging strategy for data-driven intelligent learning and many-objective optimisation capable of handling a large volume of noisy and non-linear data. This article provides the essential details of this algorithm and highlights a number of its recent applications.
Cite as:
Chakraborti, N. (2025). The advent of the deep learning evolutionary algorithm EvoDN2 and its recent applications. Computer Methods in Materials Science, 25(2), 41–55. https://doi.org/10.7494/cmms.2025.2.1021
Article (PDF):

Keywords:
Deep learning, Data-driven modelling, Many-objective optimization, Evolutionary algorithms, Genetic algorithm, Pareto optimality, Big data, Machine learning, EvoDN2
Publication dates:
Received: 19.05.2025, Accepted: 10.06.2025, Published: 02.07.2025
Publication type:
Review paper
References:
Al-Aghbari, M., & Gujarathi, A. M. (2023). Hybrid approach of using bi-objective genetic programming in well control optimization of waterflood management. Geoenergy Science and Engineering, 228, 211967. https://doi.org/10.1016/j.geoen.2023.211967
Annaratone, D. (2007). Pressure Vessel Design. Springer Berlin, Heidelberg.
Azeem, M., Ya, H. H., Alam, M. A., Kumar, M., Stabla, P., Smolnicki, M., Gemi, L., Khan, R., Ahmed, T., Ma, Q., Sadique, M. R., Mokhtar, A. A., & Mustapha, M. (2022). Application of filament winding technology in composite pressure vessels and challenges: a review. Journal of Energy Storage, 49, 103468. https://doi.org/10.1016/j.est.2021.103468
Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 46(5), 2727. https://doi.org/10.1103/PhysRevB.46.2727
Bastl, P., Chakraborti, N., & Valášek, M. (2023). Evolutionary algorithms in robot calibration. Materials and Manufacturing Processes, 38(16), 2051–2070. https://doi.org/10.1080/10426914.2023.2238368
Bernard, R., & Albright, S. (Eds.) (1993). Robot Calibration. Springer Dordrecht.
Bevilacqua, V., Nuzzolese, N., Mininno, E., & Iacca, G. (2016). Adaptive bi-objective genetic programming for data-driven system modeling. In D.-S. Huang, K. Han, A. Hussain (Eds.), Intelligent Computing Methodologies: 12th International Conference, ICIC 2016, Lanzhou, China, August 2–5, 2016, Proceedings, Part III (pp. 248–259). Springer Cham.
Canoeing at the 2024 Summer Olympics (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Canoeing_at_the_2024_Summer_Olympics
Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Computational Statistics, 11(3), e1460. https://doi.org/10.1002/wics.1460
Chakraborti, N. (2022). Data-driven evolutionary modeling in materials technology. CRC Press.
Chakraborti, N. (2024). Chapter 2.2.4. Data-driven evolutionary computation in blast furnace ironmaking. In S. Seetharaman, A. McLean, R. Guthrie, S. Seetharaman, H. Y. Sohn (Eds.), Treatise on Process Metallurgy (2nd ed., vol. 4, pp. 475–491). Elsevier. https://doi.org/10.1016/B978-0-323-85480-1.00026-9
Cheng, R., Jin, Y., Olhofer, M., & Sendhoff, B. (2016). A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 20(5), 773–791. https://doi.org/10.1109/TEVC.2016.2519378
Chugh, T., Sindhya, K., Miettinen, K., Hakanen, J., & Jin, Y. (2016). On constraint handling in surrogate-assisted evolutionary many-objective optimization. In J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, B. Paechter (Eds.), Parallel Problem Solving from Nature – PPSN XIV: 14th International Conference, Edinburgh, UK, September 17–21, 2016, Proceedings (pp. 214–224). Springer Cham. https://doi.org/10.1007/978-3-319-45823-6_2
Coello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Springer New York, NY. https://doi.org/10.1007/978-0-387-36797-2
Collet, P. (2007). Genetic programming. In J.-P. Rennard (Ed.), Handbook of Research on Nature Inspired Computing for Economics and Management (vol. 1, pp. 59–73). Idea Group Reference.
Datta, S. (2016). Materials Design Using Computational Intelligence Techniques. CRC Press.
Datta, S., & Chattopadhyay, P. P. (2013). Soft computing techniques in advancement of structural metals. International Materials Reviews, 58(8), 475–504. https://doi.org/10.1179/1743280413Y.0000000021
David, P., Mareš, T., & Chakraborti, N. (2023). Evolutionary multi-objective optimization of truss topology for additively manufactured components. Materials and Manufacturing Processes, 38(15), 1922–1931. https://doi.org/10.1080/10426914.2023.2196325
Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons.
De Jong, K. A. (2006). Evolutionary Computation: A Unified Approach. MIT Press.
Dong, S., Liu, J., Jiang, X., Li, X., Gong, W., & Xu, H. (2025). Deep-transfer-learning network for recognizing splash of BOF steelmaking process with non-equilibrium samples. Metallurgical and Materials Transactions B, 56, 2807–2820.
Engel, E., & Dreizler, R. M. (2011). Density Functional Theory: An Advanced Course. Springer Berlin.
Erkoç, Ş. (1997). Empirical many-body potential energy functions used in computer simulations of condensed matter properties. Physics Reports, 278(2), 79–105. https://doi.org/10.1016/S0370-1573(96)00031-2
George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature Reviews Materials, 4(8), 515–534. https://doi.org/10.1038/s41578-019-0121-4
Ghalati, M. K., Zhang, J., El‐Fallah, G. M. A. M., Nenchev, B., & Dong, H. (2023). Toward learning steelmaking – A review on machine learning for basic oxygen furnace process. Materials Genome Engineering Advances, 1(1), e6. https://doi.org/10.1002/mgea.6
Ghosh, A., & Chatterjee, A. (2008). Ironmaking and Steelmaking: Theory and Practice. Prentice-Hall of India.
Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive Manufacturing Technologies. Springer Cham. https://doi.org/10.1007/978-3-030-56127-7
Giri, B. K., Hakanen, J., Miettinen, K., & Chakraborti, N. (2013a). Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Applied Soft Computing, 13(5), 2613–2623. https://doi.org/10.1016/j.asoc.2012.11.025
Giri, B. K., Pettersson, F., Saxén, H., & Chakraborti, N. (2013b). Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace. Materials and Manufacturing Processes, 28(7), 776–782. https://doi.org/10.1080/10426914.2013.763953
Glaeser, A., Selvaraj, V., Lee, S., Hwang, Y., Lee, K., Lee, N., Lee, S., & Min, S. (2021). Applications of deep learning for fault detection in industrial cold forging. International Journal of Production Research, 59(16), 4826–4835. https://doi.org/10.1080/00207543.2021.1891318
Glendenning, K., Wischgoll, T., Harris, J., Vickery, R., & Blaha, L. (2016). Parameter space visualization for large-scale datasets using parallel coordinate plots. Electronic Imaging, 28, art00015. https://doi.org/10.2352/ISSN.2470-1173.2016.1.VDA-490
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company.
Guha, R., Suresh, A., DeFrain, J., & Deb, K. (2023). Virtual metrology in long batch processes using machine learning. Materials and Manufacturing Processes, 38(15), 1997–2008. https://doi.org/10.1080/10426914.2023.2220487
He, M., & He, D. (2017). Deep learning based approach for bearing fault diagnosis. IEEE Transactions on Industry Applications, 53(3), 3057–3065. https://doi.org/10.1109/TIA.2017.2661250
Hu, Z., Wang, Y., Qi, H., She, Y., Lin, Z., Hu, Z., Hua, L., Wu, M., & Qin, X. (2025). Real-time 3D temperature field reconstruction for aluminum alloy forging die using Swin Transformer integrated deep learning framework. Applied Thermal Engineering, 260, 125033. https://doi.org/10.1016/j.applthermaleng.2024.125033
Iacca, G., & Mininno, E. (2016). Introducing Kimeme, a novel platform for multi-disciplinary multi-objective optimization. In F. Rossi, F. Mavelli, P. Stano, D. C. (Eds.), Italian Workshop on Artificial Life and Evolutionary Computation. Advances in Artificial Life, Evolutionary Computation and Systems Chemistry 10th Italian Workshop, WIVACE 2015, Bari, Italy, September 22–25, 2015, Revised Selected Papers (pp. 40–52). Springer Cham. https://doi.org/10.1007/978-3-319-32695-5_4
Kim, K., Seo, B., Rhee, S.-H., Lee, S., & Woo, S. S. (2019). Deep learning for blast furnaces: Skip-dense layers deep learning model to predict the remaining time to close tap-holes for blast furnaces. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 2733–2741). Association for Computing Machinery. https://doi.org/10.1145/3357384.3357803
Koza, J. R. (1990). Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems. Stanford University, Department of Computer Science.
Kropík, B., Mareš, T., Malá, A., Doubrava, K., Padovec, Z., Fošnarič, M., & Chakraborti, N. (2025). Multi-objective optimization of composite kayak paddle shaft through evolutionary deep learning. Materials and Manufacturing Processes, 40(7), 893–901. https://doi.org/10.1080/10426914.2025.2476480
Kröse, B., & Smagt, P., van der (1996). An Introduction to Neural Networks (8th ed.). The University of Amsterdam. https://ia801305.us.archive.org/34/items/Krose_Ben_and_Patrick_van_der_Smagt_-_An_Introduction_to_Neural_Networks/Krose_Ben_and_Patrick_van_der_Smagt_-_An_Introduction_to_Neural_Networks.pdf
Li, Q., Wang, Z., Wang, S., Li, M., Lei, H., & Zou, Z. (2022). A deep learning-based diagnosis model driven by tuyere images big data for iron‐making blast furnaces. Steel Research International, 93(8), 2100826. https://doi.org/10.1002/srin.202100826
Li, X. (2003). A real-coded predator-prey genetic algorithm for multiobjective optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, L. Thiele, K. Deb (Eds.), Evolutionary Multi-Criterion Optimization: Second International Conference, EMO 2003, Faro, Portugal, April 8–11, 2003, Proceedings (pp. 207–221). Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_15
Mahanta, B. K., & Chakraborti, N. (2021). Evolutionary data driven modelling and many objective optimization of non linear noisy data in the blast furnace iron making process. Computer Methods in Materials Science, 21(3), 163–175. https://doi.org/10.7494/cmms.2021.3.0733
Mahanta, B. K., Gupta, P., Mohanty, I., Roy, T. K., & Chakraborti, N. (2023). Evolutionary data driven modeling and tri-objective optimization for noisy BOF steel making data. Digital Chemical Engineering, 7, 100094. https://doi.org/10.1016/j.dche.2023.100094
Malá, A. (2024). Multi-objective Optimisation of Stacking Sequence in Composite Frame Structures [Doctoral dissertation, Czech Technical University in Prague]. https://dspace.cvut.cz/handle/10467/119692
Malá, A., Padovec, Z., Mareš, T., & Chakraborti, N. (2023). A method for designing filament-wound composite frame structures using a data-driven evolutionary optimisation algorithm EvoDN2. Philosophical Magazine Letters, 103(1), 2272975. https://doi.org/10.1080/09500839.2023.2272975
Malá, A., Padovec, Z., Mareš, T., & Chakraborti, N. (2024a). The stacking sequence optimisation of a filament wound composite bicycle frame using the data-driven evolutionary algorithm EvoDN2. Philosophical Magazine Letters, 104(1), 2347899. https://doi.org/10.1080/09500839.2024.2347899
Malá, A., Padovec, Z., Mareš, T., & Chakraborti, N. (2024b). Shallow and deep evolutionary neural networks applications in solid mechanics. In J. Valadi, K. P. Singh, M. Ojha, P. Siarry(Eds.), Advanced Machine Learning with Evolutionary and Metaheuristic Techniques (pp. 257–296). Springer Singapore. https://doi.org/10.1007/978-981-99-9718-3_11
Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Springer New York, NY. https://doi.org/10.1007/978-1-4615-5563-6
Mothilal, M., & Kumar, A. (2025). Predictive modeling of ultimate tensile strength in dissimilar friction stir welded aluminum alloys via machine learning approach. Philosophical Magazine Letters, 105(1). https://doi.org/10.1080/09500839.2025.2472669
Nayak, D. R., Sahu, S. K., Mohammed, J. (2014). A Cellular Automata based Optimal Edge Detection Technique using Twenty-Five Neighborhood Model. ArXiv. https://doi.org/10.48550/arXiv.1402.1348
Paszkowicz, W. (2023). Increasing importance of genetic algorithms in science and technology: linear trends over the period from year 1989 to 2022. Materials and Manufacturing Processes, 38(16), 2107–2126. https://doi.org/10.1080/10426914.2023.2238056
Peters, S. T. (Ed.) (2011). Composite Filament Winding. ASM International.
Pettersson, F., Chakraborti, N., & Saxén, H. (2007). A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Applied Soft Computing, 7(1), 387–397. https://doi.org/10.1016/j.asoc.2005.09.001
Rana, R., Cordova-Tapia, E., Jimenez, J. A., Morales-Rivas, L., & Garcia-Mateo, C. (2024). Design of carbide free bainitic steels for hot rolling practices. Philosophical Magazine Letters, 104(1). https://doi.org/10.1080/09500839.2024.2322552
Rapaport, D. C. (2004). The Art of Molecular Dynamics Simulation (2nd ed.). Cambridge University Press.
Rennard, J.-P. (Ed.) (2006). Handbook of Research on Nature-Inspired Computing for Economics and Management. IGI Global.
Richards, R. M., & Ciobanu, C. V. (2024). Can Hume-Rothery rules predict single-phase high-entropy rocksalt oxide phases?. Philosophical Magazine Letters, 104(1), 2433726. https://doi.org/10.1080/09500839.2024.2433726
Roy, S., & Chakraborti, N. (2020). Development of an evolutionary deep neural net for materials research. In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings (pp. 817–828). Springer Cham. https://doi.org/10.1007/978-3-030-36296-6_76
Roy, S., & Chakraborti, N. (2022). Novel strategies for data-driven evolutionary optimization. In T. Tuovinen, J. Periaux, P. (Eds.), Neittaanmäki Computational Sciences and Artificial Intelligence in Industry: New Digital Technologies for Solving Future Societal and Economical Challenges (pp. 11–25). Springer Cham. https://doi.org/10.1007/978-3-030-70787-3_2
Roy, S., Saini, B. S., Chakrabarti, D., & Chakraborti, N. (2020). Mechanical properties of micro-alloyed steels studied using a evolutionary deep neural network. Materials and Manufacturing Processes, 35(6), 611–624. https://doi.org/10.1080/10426914.2019.1660786
Roy, S., Dutta, A., & Chakraborti, N. (2021a). A novel method of determining interatomic potential for Al and Al-Li alloys and studying strength of Al-Al3Li interphase using evolutionary algorithms. Computational Materials Science, 190, 110258. https://doi.org/10.1016/j.commatsci.2020.110258
Roy, S., Dutta, A., & Chakraborti, N. (2021b). MEAM potential for Al and Al-Li alloys developed by Roy, Dutta, and Chakraborti (2021) v000. https://openkim.org/id/MEAM_LAMMPS_RoyDuttaChakraborti_2021_AlLi__MO_971738391444_000
Roy, S., Dürholt, J. P., Asche, T. S., Zipoli, F., & Gómez-Bombarelli, R. (2024). Learning a reactive potential for silica-water through uncertainty attribution. Nature Communications, 15(1), 6030. https://doi.org/10.1038/s41467-024-50407-9
Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. In 2013 International Conference on Collaboration Technologies and Systems (CTS) (pp. 42–47). IEEE. https://doi.org/10.1109/CTS.2013.6567202
Saini, B. S., Chakrabarti, D., Chakraborti, N., Shavazipour, B., & Miettinen, K. (2023). Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework. Engineering Applications of Artificial Intelligence, 120, 105918. https://doi.org/10.1016/j.engappai.2023.105918
Samek, W., Montavon, G., Lapuschkin, S., Anders, Ch. J., & Müller, K.-R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247–278. https://doi.org/10.1109/JPROC.2021.3060483
Sarkar, R., Singh, S. B., & Dutta, A. (2024). Assessment of Bayesian guidance strategy to develop bake-hardening ferritic steel. Philosophical Magazine Letters, 104(1), 2366219. https://doi.org/10.1080/09500839.2024.2366219
Saxén, H., & Pettersson, F. (2006). Method for the selection of inputs and structure of feedforward neural networks. Computers & Chemical Engineering, 30(6–7), 1038–1045. https://doi.org/10.1016/j.compchemeng.2006.01.007
Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200
Simkus, A., Navickas, V., Vveinhardt, J., & Alekrinskis, A. (2020). The technical parameters of the creation process for kayak paddles as a sport product. Annals of Applied Sport Science, 8(4), e845. https://doi.org/10.29252/aassjournal.845
Singh, S. K., Mahanta, B. K., Rawat, P., & Kumar, S. (2024). Machine learning-assisted design of high-entropy alloys for optimal strength and ductility. Journal of Alloys and Compounds, 1007, 176282. https://doi.org/10.1016/j.jallcom.2024.176282
Sitko, M., Pietrzyk, M., & Madej, L. (2016). Time and length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method. Journal of Computational Science, 16, 98–113. https://doi.org/10.1016/j.jocs.2016.05.007
Smith, J. L. (2020). Advances in neural networks and potential for their application to steel metallurgy. Materials Science and Technology, 36(17), 1805–1819. https://doi.org/10.1080/02670836.2020.1839206
Smyrnov, M., Funcke, F., & Kabliman, E. (2024). Prediction of material toughness using ensemble learning and data augmentation. Philosophical Magazine Letters, 104(1). https://doi.org/10.1080/09500839.2024.2372497
Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P. J., in ‘t, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, Ch., & Plimpton, S. J. (2022). LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171
Vashistha, S., Mahanta, B. K., Singh, V. K., & Singh, S. K. (2023). Machine learning assisted optimization of tribological parameters of Al–Co–Cr–Fe–Ni high-entropy alloy. Materials and Manufacturing Processes, 38(16), 2093–2106. https://doi.org/10.1080/10426914.2023.2219332
Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2023). Optimization of dome shape for filament wound pressure vessels using data-driven evolutionary algorithms. Materials and Manufacturing Processes, 38(15), 1899–1910. https://doi.org/10.1080/10426914.2023.2187823
Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2024a). Analysis and optimization of junction between cylindrical part and end dome of filament wound pressure vessels using data driven evolutionary algorithms. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(6), 2348–2361. https://doi.org/10.1177/09544062231191319
Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2024b). Complex design and analysis of filament wound composite pressure vessels using data driven evolutionary algorithms. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089241238410
Vondráček, D., Padovec, Z., Mareš, T., & Chakraborti, N. (2025). Analysis of thermoelastic stresses in filament wound composite pressure vessels using evolutionary deep learning and many-objective optimisation. Philosophical Magazine Letters, 105(1), 2476499. https://doi.org/10.1080/09500839.2025.2476499
Vuolio, T., Visuri, V. V., Sorsa, A., Paananen, T., Tuomikoski, S., & Fabritius, T. (2023). Machine learning assisted identification of grey-box hot metal desulfurization model. Materials and Manufacturing Processes, 38(15), 1983–1996. https://doi.org/10.1080/10426914.2023.2195916
Wolfram, S. (1983). Cellular Automata. Los Alamos Science. https://content.wolfram.com/sw-publications/2020/07/cellular-automata.pdf
Wu, F., Zhang, J., Falch, K. V., & Mirihanage, W. (2024). Machine-learning-assisted analysis of highly transient X-ray imaging sequences of weld pools. Philosophical Magazine Letters, 104(1). https://doi.org/10.1080/09500839.2024.2388159
Xu, Y., Li, Z., Wang, S., Li, W., Sarkodie-Gyan, T., & Feng, S. (2021). A hybrid deep-learning model for fault diagnosis of rolling bearings. Measurement, 169, 108502. https://doi.org/10.1016/j.measurement.2020.108502
Yang, H.-Ch., Zheng, Ch.-H., Chen, Y.-Z., Tseng, Ch.-M., & Kao, Y.-Ch. (2018). Intelligent diagnosis of forging die based on deep learning. In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE) (pp. 199–204). IEEE. https://doi.org/10.1109/COASE.2018.8560420
Zhang, X., Kano, M., & Matsuzaki, S. (2019). A comparative study of deep and shallow predictive techniques for hot metal temperature prediction in blast furnace ironmaking. Computers & Chemical Engineering, 130, 106575. https://doi.org/10.1016/j.compchemeng.2019.106575
Zhou, G., Liu, W., Yu, Y., & Saxén, H. (2025). Advancing blast furnace thermal state prediction: A data‐driven approach using thermocouple integration and multimodal modeling. Steel Research International, 2400896. https://doi.org/10.1002/srin.202400896 [in print].