The role of die definition in the numerical simulations of two-points incremental forming processes

The role of die definition in the numerical simulations of two-points incremental forming processes

Konrad Perzynski, Kacper Pawlikowski, Lukasz Madej

AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland.



The main objective of this work is to investigate the influence of the definition of dies type in the finite element simulation of the two-points incremental forming processes (TPIF). Particular attention is on determining the effect of assigning elastic properties for the 3D printed dies or considering fully rigid on the final results. During the research, three different shapes of dies were analyzed. Simulation results in the form of sheet thickness distributions and measured forces are presented for comparison purposes.

Cite as:

Perzynski K., Pawlikowski, K., & Madej, L. (2023). The role of die definition in the numerical simulations of two-points incremental forming processes. Computer Methods in Materials Science, 23(1), 5-12.

Article (PDF):


Two-points incremental forming, Finite element method, Additive manufacturing


Bârsan, A., Racz, S.-G., Breaz, R., & Crenganiș, M. (2022). Dynamic analysis of a robot-based incremental sheet forming using Matlab-Simulink SimscapeTM environment. Materials Today: Proceedings, 62(5), 2538–2542.

Gronostajski, Z., Pater, Z., Madej, L., Gontarz, A., Lisiecki, L., Łukaszek-Sołek, A., Łuksza, J., Mróz, S., Muskalski, Z., Muzykiewicz, W., Pietrzyk, M., Śliwa, R.E., Tomczak, J., Wiewiórowska, S., Winiarski, G., Zasadziński, J., & Ziółkiewicz, S. (2019). Recent development trends in metal forming. Archives of Civil and Mechanical Engineering, 19(3), 898–941.

Hu, Z., Jin, J., & Jinlan, B. (2017). Research on the forming direction optimization for the uniformity of the sheet part thickness in the CNC incremental forming. The International Journal of Advanced Manufacturing Technology, 93(5–8), 2547–2559.

Jeswiet, J., Geiger, M., Engel, U., Kleiner, M., Schikorra, M., Duflou, J., Neugebauer, R., Bariani, P., & Bruschi, S. (2008).
Metal forming progress since 2000. CIRP Journal of Manufacturing Science and Technology, 1(1), 2–17.

Kharche, A., & Barve, S. (2022). Incremental sheet forming of composite material. Materials Today: Proceedings, 63, 176–184.

Leem, D., Liao, S., Bhandari, S., Wang, Z., Ehmann, K., & Cao, J. (2022). A toolpath strategy for double-sided incremental forming of corrugated structures. Journal of Materials Processing Technology, 308, 117727.

McAnulty, T., Jeswiet, J., & Doolan, M. (2017). Formability in single point incremental forming: A comparative analysis of the state of the art. CIRP Journal of Manufacturing Science and Technology, 16, 43–54.

Mehrpouya, M., Vahabi, H., Janbaz, S., Darafsheh, A., Mazur, T. R., & Ramakrishna, S. (2021). 4D printing of shape memory polylactic acid (PLA). Polymer, 230, 124080.

Mohanty, S., Regalla, S. P., & Rao, Y.V.D. (2021). Effect of inclination and rotation of the sheet on sheet thinning and formability in robot assisted incremental sheet metal forming. Materials Today: Proceedings, 46(2), 1039–1049.

Peng, W., Ou, H., & Becker, A. (2019). Double-sided incremental forming: a review. Journal of Manufacturing Science and Engineering, 141(5), 050802.

Rosoux, F., Appeldoorn, H., Garray, D., & Beeckman, E. (n.d.). Large scale robotic 3D printing trajectories generation and pieces quality optimization. Computer Methods in Materials Science [in print].