On the prognosis of the growth of a heterostructure from a gas phase to analyze the possibility of decreasing mismatch-induced stresses

Evgeny L. Pankratov1, 2

1Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia.

2Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia.

DOI:

https://doi.org/10.7494/cmms.2021.2.0761

Abstract:

An approach to decreasing mismatch-induced stress in a heterostructure by radiation processing during growth from the gas phase is introduced in this paper. Within the framework of the approach with decreasing mismatch-induced stresses, one can find the acceleration of the recombination and diffusion of radiation defects generated during radiation processing. An analytical approach for analyzing mass and heat transfer is also introduced. The approach provides the opportunity to simultaneously take into account spatial and temporal variations of mass transfer parameters. At the same time, the approach allows the nonlinearity of the considered processes to be taken into account.

Cite as:

Pankratov, E. L. (2021). On the prognosis of the growth of a heterostructure from a gas phase to analyze the possibility of decreasing mismatch-induced stresses. Computer Methods in Materials Science, 21(2), 105–122. https://doi.org/10.7494/cmms.2021.2.0761

Article (PDF):

Keywords:

Growth from gas phase, Decreasing of mismatch-induced stresses, Radiation processing, Analytical approach for analyzing of mass and heat transfer

References:

Carslaw, H.S., & Jaeger, J.C. (1964). Conduction of heat in solids. Clarendon Press.

Chakraborty, A., Xing, H., Craven, M.D., Keller, S., Mates, T., Speck, J.S., Den Baars, S.P., & Mishra, U.K. (2004). Nonpolar α-plane p-type GaN and p-n-Junction Diodes. Journal of Applied Physics, 96(8), 4494–4499.

Fahey, P.M., Griffin, P.B., & Plummer, J.D. (1989). Point defects and dopant diffusion in silicon. Reviews of Modern Physics, 61(2), 289–388.

Gusev, V.G., & Gusev, Yu.M. (1991). Elektronika. Vysshaya Shkola [Гусев, В.Г., Гусев, Ю.М. (1991). Электроника. Высшая Школа].

Korn, G., & Korn, T. (1968). Mathematical Handbook for scientists and engineers. Definitions, theorems and formulas for reference and review (2nd ed.). McGraw-Hill.

Lachin, V.I., & Savelov, N.S. (2001). Elektronika. Feniks [Лачин, В.И., & Савелов, Н.С. (2001). Электроника. Феникс].

Landau, L.D., & Lifshitz, E.M. (2001). Theory of elasticity. Volume 7 of Course of Theoretical Physics, Physmatlit.

Li, Y., Antonuk, L.E., El-Mohri, Y., Zhao, Q., Du, H., Sawant, A., & Wang, Y. (2006). Effects of x-ray irradiation on polycrystalline silicon, thin-film transistors. Journal of Applied Physics, 99(6), 064501.

Lundin, V.V., Sakharov, A.V., Zavarin, E.E., Sinitsin, M.A., Nikolaev, A.E., Mikhailovsky, G.A., Brunkov, P.N., Goncharov, V.V., Ber, B.Ya., Kazantsev, D.Yu., & Tsatsul’nikov, A.F. (2009). Effect of carrier gas and doping profile on the surface morphology of MOVPE grown heavily doped GaN:Mg layers. Semiconductors, 43(7), 963–967.

Mitsuhara, M., Ogasawara, M., & Sugiura, H. (1998). Beryllium doping of InP during metalorganic molecular beam epitaxy using bismethylcyclopentadienyl-beryllium. Journal of Crystal Growth, 183(1), 38–42.

Pankratov, E.L. (2012). Decreasing of depth of p-n-junction in a semiconductor heterostructure by serial radiation processing and microwave annealing. Journal of Computational and Theoretical Nanoscience, 9(1), 41–49.

Pankratov, E.L., & Bulaeva, E.A. (2012). Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers. International Journal of Micro-Nano Scale Transport, 3(3–4), 119–130.

Pankratov, E.L., & Bulaeva, E.A. (2013a). Application of native inhomogeneities to increase compactness of vertical field-effect transistors. Journal of Computational and Theoretical Nanoscience, 10(4), 888–893.

Pankratov, E.L., & Bulaeva, E.A. (2013b). Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Reviews in Theoretical Science, 1(1), 58–82.

Sokolov, Yu.D. (1955). About the definition of dynamic forces in the mine lifting. Applied Mechanics, 1(1), 23–35.

Sorokin, L.M., Veselov, N.V., Shcheglov, M.P., Kalmykov, A.E., Sitnikova, A.A., Feoktistov, N.A., Osipov, A.V., & Kukushkin, S.A. (2008). Electron-microscopic investigation of a SiC/Si(111) structure obtained by solid phase epitaxy. Technical Physics Letters, 34(11), 992–994. https://doi.org/10.1134/S1063785008110278.

Stepanenko, I.P. (1980). Osnovy mikroelektroniki. Sovetskoye Radio [Степаненко, И.П. (1980). Основы микроэлектроники. Советское Радио].

Talalaev, R.A., Yakovleva, E.V., Karpova, S.Yu., & Makarov, Yu.N. (2001). On low temperature kinetic effects in metal-organic vapor phase epitaxy of III–V compounds. Journal of Crystal Growth, 230(1–2), 232–238.

Vinetskiy, V.L., & Kholodar’, G.A. (1979). Radiatsionnaya fizika poluprovodnikov. Naukova Dumka [Винецкий, В.Л., & Холодарь, Г.А. (1979). Радиационная физика полупроводников. Наукова Думка].

Vorob’ev, A.A., Korabl’ev, V.V., & Karpov, S.Yu. (2003). The use of magnesium to dope gallium nitride obtained by molecular-beam epitaxy from activated nitrogen. Semiconductors, 37(7), 838–842. https://doi.org/10.1134/1.1592861.

Zhang, Y.W., & Bower, A.F. (1999). Numerical simulation of island formation in a coherent strained epitaxial thin film system. Journal of the Mechanics and Physics of Solids, 47(11), 2273–2297.