Effect of forging sequence on evolution of parameters controlling microstructure in multistage drop forging process

Effect of forging sequence on evolution of parameters controlling microstructure in multistage drop forging process

Piotr Skubisz, Łukasz Lisiecki, Janusz Majta, Krzysztof Muszka

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.




The study presents the comparative analysis of competitive techniques of forging and analysis of the effect of the forging sequences on microstructure development. Starting with industrial practice of hammer-forged elongate geometry, two competitive processes were numerically analysed in term of forging economy and quality. Numerical modeling of temperature, strain and strain rate fields let theoretical prediction of the microstructure development in multi-stage drop forging process consisting of progressive sequence of multiple blows in preforming and die-impression forging operations. The aim of the modeling was prediction of the parameters of austenite in as-forged condition, which in thermomechanical controlled processing form the restored austenite condition prior to direct cooling. Dynamic recrystallization kinetics was analyzed with use of Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, taking advantage of numerically calculated of temperature, strain and strain-rate in selected location in the volume of the part. The obtained results show the possibility of look-ahead microstructure prediction and form the basis for comprehensive selection of the forging process parameters aimed at producing required microstructure and its uniformity in the bulk in multi-stage hammer-forging process.

Cite as:

Skubisz, P., Lisiecki, Ł., Majta, J., & Muszka, K. (2019). Effect of forging sequence on evolution of parameters controlling microstructure in multistage drop forging process. Computer Methods in Materials Science, 19(3), 81-88. https://doi.org/10.7494/cmms.2019.3.0641

Article (PDF):


Drop forging, Thermomechanical processing, Microstructure evolution, Grain refinement


Adamczyk, J., Opiela, M., 2006, Engineering of Forged Products of Microalloyed Constructional Steels, J. Arch. Mater. Manuf. Eng., 15, 153-158.

Biba, N.V., Stebunov, S.A., Ovchinnikov, A.V., Shmelev, V.P., 2006, Experience in simulation for predicting the structure of die forgings, Met. Sci. Heat Treat., 48, 7-8.

Byrer, T.G., Semiatin, S.L., Vollmer, D.C. (eds.), 1985, Forging Handbook, Forging Industry Association, American Society of Metals, Cleveland, 1985.

Da Silva, M.L.N., Regone, W., Button, S.T., 2006, Microstructure and mechanical properties of microalloyed steel forgings manufactured from cross-wedge-rolled preforms, Scripta Mater. 54, 213-217.

Dhua, S.K., Sen, S., 2011, Effect of direct quenching on the microstructure and mechanical properties of the lean chemistry HSLA-100 steel plates, Mat. Sci. Eng. A, 528, 6356-6365.

Fatemi, A., Zoroufi, M., 2002, Fatigue performance evaluation of forged versus competing process technologies: a comparative study. Proc. 24th Forging Industry Technical Conference, Cleveland, 2002.

Fujikawa, S., 2000, Application of CAE for hot-forging of automotive components, J. Mater. Proc. Tech., 98, 176-181.

Irani, M., Taheri, A.K., 2008, Effect of forging temperature on homogeneity of microstructure and hardness of precision forged steel spur gear, Mater. Chem. Phys, 112, 3, 1099-1105.

Kučera, P., Mazancova, E., 2016, Mechanical and structural response of AISI 4135 steel after controlled cooling process, Metalurgija, 55(2), 165-168.

Muszka, K., Majta, J., Bienias, L., 2006, Effect of grain refinement on mechanical properties of microalloyed steels, Met. Foundry Eng., 32, 87-96.

Majta, J; Zurek, A.K., Cola, M., Hochanadel, P., Pietrzyk, M., 2002, An integrated computer model with applications for austenite-to-ferrite transformation during hot deformation of Nb-microalloyed steels, Metall. Mater. Trans. A, 33,

Mukherjee, M., Prahl, U., Bleck, W., 2014, Modelling the straininduced precipitation kinetics of vanadium carbonitride during hot working of precipitation-hardened ferritic–pearlitic steels, Acta Mater., 71, 234-254.

Pietrzyk, M., Madej, Ł., 2014, perceptive review of ferrous micro/macro material models for thermo-mechanical processing applications, Steel Res. Int., 88(10), 1-14.

Skubisz, P., Micek, P., Sińczak, J., Tumidajewicz, M., 2011, Automated determination and on-line correction of emissivity coefficient in controlled cooling of drop forgings, Diffusion and Defect Data – Solid State Data. Part B, Sol. St. Phen., 177, 76-83.

Skubisz, P., Żak, A., Burdek, M., Lisiecki, Ł., Micek, P., 2015, Design of controlled processing conditions for drop forgings made of microalloy steel grades for mining industry. Arch. Metal. Mat., 60(1), 445-453.

Skubisz, P., Lisiecki, Ł., Majta, J., Muszka, K., 2017a, Modeling of microstructure development in multi-stage hammer forging and fan cooling of microalloyed steel, Metal 2017: 26th Int. Conf. on Metallurgy and Materials, Brno, 127-128.

Skubisz, P., Muszka, K., Lisiecki Ł., Majta, J., 2017b, Modelování vývoje mikrostruktury při víceoperačním kování mikrolegované oceli na bucharu a následném zrychleném ochlazování, Kovárenství, 62, 23-27.

Takemasu, T., Vasques, V., Painter, B., Altan, T., 1996, Investigation of metal flow and preform optimization in flashless forging of a connecting rod, J. Mater. Proc. Tech., 59, 95-105.

Werner, W.A., (ed.), 1994, Schmiedeteile–Gestaltung. Anwendung, Beispiele, Zuverlassig Deutsche Schmiedetechnik, Hagen, 1994.