The use of computer image analysis in determining material flow in the roller press compacting unit during compacting of fine-grained material

The use of computer image analysis in determining material flow in the roller press compacting unit during compacting of fine-grained material

Michał Bembenek

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.



Mechanisms of fine-grained material flow in a roller press are a constant subject of research. The proper transfer of feed in the feeder has a significant influence on the correct course of the compaction and consolidation process, product quality, and the intensity of wear of the forming components. A few mathematical models of compaction process have been put forth, but they are focused mainly on loads in the compacting unit and consolidated material properties. During compaction the loose material properties including the Young module, the external and internal friction coefficient, and the side pressure coefficient change continuously. Therefore visualisation tests were carried out to survey the flow of material in a compaction unit equipped with rollers with a flat working surface and gravity feeder. Using the NI Vision Builder program, the recorded video observations were analyzed and the medium speed distribution of the material in the feeder was determined. The results were presented in the form of graphs and compared with one another, specifying the relationship between the material speed distribution and the press operation parameters.

Cite as:

Bembenek, M. (2018). The use of computer image analysis in determining material flow in the roller press compacting unit during compacting of fine-grained material. Computer Methods in Materials Science, 18(2), 58 – 63.

Article (PDF):


Compaction, Agglomeration, Roller press, Consolidation, Fine-grained materials


Bembenek, M., 2018, Innowacje w konstrukcji i zastosowaniupras walcowych, Rozprawy, Monografie – Akademia Górniczo-Hutnicza im. Stanisława Staszica, 337, WydawnictwaAGH, Kraków (in Polish).

Bembenek, M., 2017a, Badania i perspektywy nowych obszarówstosowania pras walcowych, Przemysł Chemiczny, 96,9, 1845-1847.

Bembenek, M., 2017b, Experimental analysis of consolidatedmaterial flow through a roller press with a nonsymmetricalcompaction unit, Journal of Machine Constructionand Maintenance, 2, 117-122.

Bembenek, M., Romanyshyn, T., 2018, Operation of BriquettingRoller Presses with an Asymmetrical Compaction Unit,Journal of Machine Construction and Maintenance, 2, 53-59.

Bindhumadhavan, G., Seville, J.P.K., Adams, M.J., Greenwood,R.W., Fitzpatrick, S., 2005, Roll compaction of a pharmaceuticalexcipient: Experimental validation of rolling theoryfor granular solids, Chemical Engineering Science, 60,3891 -3897.

Borowski, G., Hycnar, J.J., 2013, Utilization of Fine Coal Wasteas a Fuel Briquettes, International Journal of Coal Preparationand Utilization, 33, 4, 194-204.

Flore, K., Schoenherr, M., Feise, H., 2009, Aspects of granulationin the chemical industry, Powder Technology, 189,327-331.

Gara, P., 2015, Badania procesu dwustopniowej granulacjidrobnoziarnistych odpadów, Przemysł Chemiczny, 9, 1509-1511 (in Polish).Hryniewicz, M., 1997, Metoda doboru pras walcowych orazopracowania założeń do ich modernizacji lub konstrukcji,Rozprawy, Monografie – Akademia Górniczo-Hutniczaim. Stanisława Staszica, 58, Wydawnictwa AGH, Kraków(in Polish).

Hryniewicz, M., Bembenek M., 2017, Analysis of the producibilityof mineral fertilizers from industrial waste, Journalof Research and Applications in Agricultural Engineering,62, 1, 43-47.

Hryniewicz, M., Gara, P., Bembenek, M., 2011, Modelowanierozkładu nacisku jednostkowego w procesie kompaktowaniamateriału sypkiego, Automatyka, 15, 2, 175-182 (in Polish).

Janewicz, A., Kosturkiewicz, B., 2006, Wizualizacja grawitacyjnegodozowania nadawy do prasy walcowej, MonografieWydziału Inżynierii Mechanicznej i Robotyki AGH,32, 241-248 (in Polish).

Johanson, J.R., 1965, A Rolling Theory for Granular Solids,Journal of Applied Mechanics, 32, 4, 842-848.

Katashinskii, V.P., 1966, Analytical determination of specificpressure during the rolling of metal powders, Soviet PowderMetallurgy and Metal Ceramics, 5 (10), 765-772.

Kleinebudde, P., 2004, Roll compaction/dry granulation: pharmaceuticalapplications, European Journal of Pharmaceuticsand Biopharmaceutics, 58, 317-326.

Kosturkiewicz, B., Janewicz, A., Hryniewicz, M., 2017, Granulacjadwustopniowa nawozów mineralnych, PrzemysłChemiczny, 96, 9, 1873-1876 (in Polish).

Krok, A., Peciar, M., Fekete, R., 2014, Using the DPIV opticaltechnique to measure the velocity of powder material inthe space between the rollers in a roll compactor, PowderTechnology, 262, 131-141.

Lecompte, T., Doremus, P., Thomas, G., Perier-Camby, L., LeThiesse, J.C., Masteau, J.C. Debove, L., 2005, Dry granulationof organic powders—dependence of pressure 2Ddistributionon different process parameters, Chemical EngineeringScience, 60, 3933-3940.

Loginov, Yu. N., Babailov, N.A., Pervukhina, D.N., 2015,Physical modeling of roller pressing with asymmetric effectson compacted material, News of higher educationalinstitutions, Black Metallurgy, 58, 186-191 (in Russian).

Loginov, Yu. N., Bourkine, S. P., Babailov, N. A., 2001, Cinematicsand volume deformations during roll press briquetting,Journal of Materials Processing Technology,118, 151-157.

Peter, S., Lammens, R.F., Steffens, K.J., 2010, Roller compaction/Dry granulation: Use of the thin layer model for predictingdensities and forces during roller compaction,Powder Technology, 199, 165-175.

Yehia, K.A., 2007, Estimation of roll press design parametersbased on the assessment of a particular nip region, PowderTechnology, 177, 148-153.

Zinchuk, A.V., Mullarney, M. P., Hancock, B.C., 2004, Simulationof roller compaction using a laboratory scale compactionsimulator, International Journal of Pharmaceutics,269, 403-415.