Experimental investigations on the transformation-induced plasticity in a high tensile steel under varying thermo-mechanical loading

Experimental investigations on the transformation-induced plasticity in a high tensile steel under varying thermo-mechanical loading

Bernd-Arno Behrens, Anas Bouguecha, Christian Bonk, Alexander Chugreev

Institute of Forming Technology and Machines (IFUM), Leibniz Universitaet Hannover, An der Universitaet 2, 30823 Garbsen, Germany.




Transformation-induced plasticity (TRIP) also known as transformation plasticity (TP) occurs during solid state phase transformation in the case of applied stress and may lead to irreversible macroscopic distortions in steel components after heat treatment. Particularly, in the context of cost-efficient hot forging, where heat treatment is integrated in the process chain, various complex stress states can occur during the cooling phase due to irregular part geometry, temperature gradients and local differences in the deformation history. Varying local temperature, unsteady stress state or even sudden unloading during the transformation can have a strong impact on the resulting TRIP strain. Thus prediction of the final distortions in hot formed steel components becomes challenging. For this reason process simulation based on the finite element (FE) method offers great opportunities for the accurate virtual process design, reducing time- as well as cost-intensive trial and error cycles. However, a realistic FE-simulation requires reliable mathematical models as well as detailed thermo-mechanical material data. In order to improve the modelling of the material behavior in a hot forging and quenching process, physical simulations for particular process-related time-force-temperature profiles have been carried out on a uniaxial thermo-mechanical testing machine. The relative dilatation of the steel specimens for several applied stresses as well as for the case of sudden unloading have been recorded and evaluated for both compressive and tensile loads. It has been shown that other process parameters (e. g. heating strategy) also have a significant influence on the resulting TRIP strains.

Cite as:

Behrens, B., Bouguecha, A., Bonk, C., Chugreev, A. (2017). Experimental investigations on the transformation-induced plasticity in a high tensile steel under varying thermo-mechanical loading. Computer Methods in Materials Science, 17(1), 36 – 43. https://doi.org/10.7494/cmms.2017.1.0573

Article (PDF):


Dilatation, Transformation plasticity, Backflow effect, High tensile steel, Martensitic transformation


Ahrens, U., 2003, Beanspruchungsabhängiges Umwandlungsverhaltenund Umwandlungsplastizität niedrig legierterStähle mit unterschiedlich hohen Kohlenstoffgehalten.PhD Thesis, Universitaet Paderborn (in German).

Åkerström, P., 2006, Modelling and Simulation of Hot Stamping,PhD Thesis, 1402-1544.

Behrens, B.-A., Schrödter, J, 2014, Numerical simulation ofphase transformation during the hot stamping process,Thermal Process Modeling – Proceedings from the 5thInternational Conference on Thermal Process Modelingand Computer Simulation, ICTPMCS 2014, 180-191.

Behrens, B.-A., Bouguecha, A., Vucetic, M., Chugreev, A.,2016, Advanced Wear Simulation for Bulk Metal FormingProcesses, MATEC Web of Conferences, 80, 04003,DOI: http://dx.doi.org/10.1051/matecconf/20168004003.

Denis, S., Simon, A., Beck, G., Estimation of the effect ofstress/phase transformation interaction when calculatinginternal stress during martensitic quenching of steel,Transactions of the Iron and Steel Institute of Japan, 22,1982, 504-513.

Fischer, M.U.A., Dickert, H.-H., Bleck, W., Huskic, A., Kazhai,M., Hadifi, T., Bouguecha, A., Behrens, B.-A., Labanova,N., Felde, A., Liewald, M., Egorov, F., Gabrecht, M.,Brinksmeier, E., Reimche, W., Bruchwald, O.,Frackowiak, W., Maier, H.J., Bucquet, T., Hinrichs, B.,Fritsching, U., 2014, EcoForge: Energy-efficient processChain of a production of high forging parts, HTM J.Heat Treatm. Mat., 69, 4, 209-219.

Fischer, F.D., Reisner, G., Werner, E., Tanaka, K., Cailletaud,G., Antretter, T., 2000, A new view on transformationinduced plasticity (TRIP), Int. J. Plast., 16, 723-748.

Leblond, J.B., 1989, Mathematical modelling of TransformationPlasticity in Steel II. Coupling with strain hardeningphenomena, Int. J. Plast., 5, 6, 573-591.

Leblond, J.B., Devaux, J., Devaux, J.C., 1989, Mathematicalmodelling of Transformation Plasticity in Steel I. Caseof ideal-plastic phases, Int. J. Plast., 5, 6, 551-572.

Lütjens, J., Hunkel, M., 2013, Einfluss der Umwandlungsplastizitätbei der Simulation des partiellen Presshärtens,HTM J. Heat Treatm. Mat., 68, 4, 171-177.

Magee, C.L., 1966, Transformation kinetics, microplasticity andageing of martensite in Fe-31-Ni, PhD Thesis, CarnegieInstitute of Technology, Pittsburgh, PA.

Mahnken, R., Schneidt, A., Antretter, T., 2009, Macro modellingand homogenization for transformation inducedplasticity of a low-alloy steel. Int. J. Plast., 25, 2, 183-204.

Nürnberger, F., Grydin, O., Schaper, M., Bach, Fr.-W., Koszurkiewicz,B., Milenin, A., 2010, Microstructure transformationsin tempering steels during continuous coolingfrom hot forging temperatures, Steel Research, 81, 3,224-233.

Șimșir, C., 2008, 3D finite element simulation of steel quenchingin order to determine the microstructure and residualstresses, PhD Thesis, Middle East Technical University.Somani, M.C., Karjalainen, L.P., Eriksson, M., Ldenburg, M.,2001, Dimensional Changes and Microstructural Evolutionin a B-bearing Steel in the Simulated Forming andQuenching Process, ISIJ International, 41, 4, 361-367.

Tschumak, S., 2012, Experimentelle Untersuchungen desbeanspruchungsabhängigen Umwandlungsverhaltens undder Umwandlungsplastizität des Stahls 51CrV5 inAnlehnung an einen thermo-mechanisch gekoppeltenUmformprozess, PhD Thesis, University of Paderborn(in German).

Vollrath, K., 2013, Simulation in der Umformtechnik, IndustrieverbandMassivumformung e.V. (in German).Wollf, M., Boehm, M., Dalgic, M., Loewisch, G., Rath, J., 2007,Validation of a TP model with backstress for the pearlitictransformation of the steel 100Cr6 under step-wiseloads, Computational Materials Science, 39, 49-54.