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Abstract
In the era of Industry 4.0, deploying highly specialised machine learning models trained on unique and often scarce datasets is 
an attractive solution for advancing automated quality control and minimising production costs. Therefore, the main aim of this 
research is to evaluate the capabilities of three deep learning models (ResNet-18, ResNet-50 and SE-ResNeXt-101 (32 × 4d))  
in the identification of surface defects in forged products. Leveraging advanced photography techniques, including studio 
lighting and a shadowless box, high-quality images of complex product surfaces were acquired for the training data set. Given 
the relatively small size of the image dataset, aggressive data augmentation techniques were introduced during the training and 
evaluation process to ensure robust model generalisation ability. The results obtained demonstrate the significant impact of data 
augmentation on model performance, highlighting its importance in training and evaluating deep learning models with limited 
data. This research also emphasises the need for innovative data pre-processing strategies in an efficient and robust machine 
learning model delivery to the industrial environment.
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1. Introduction

In recent years, deep learning has revolutionised the field 
of computer vision, enabling unprecedented advances 
in image recognition, object detection, and semantic 
segmentation (Chai et al., 2021). Convolutional neural 
networks (CNNs), a cornerstone of this progress, have 
demonstrated exceptional performance in various tasks 
by leveraging hierarchical feature extraction and spatial 
hierarchies (LeCun et al., 2015). The gradient backprop-
agation algorithm (Rumelhart et al., 1986) plays an im-
portant role in these approaches. By efficiently updating 
the weights of neural networks through gradient descent, 
backpropagation allows for the training of deep neural 
models and enables them to learn intricate patterns and 
features from vast amounts of data (LeCun et al., 2015). 

However, the success of these approaches relies directly 
on the large amount of training data involved. To mini-
mise this constraint, an approach of data augmentation or 
transfer learning can be used. 

In the first case, e.g., AutoAugment (Cubuk et al., 
2019), which is a  data augmentation strategy finding 
algorithm designed to enhance the performance of ma-
chine learning models by automatically discovering the 
optimal augmentation policies, can be used. It leverages 
a reinforcement learning framework where a controller, 
typically a recurrent neural network (RNN), generates 
candidate augmentation policies. These policies, com-
prising combinations of transformations such as rota-
tions, translations, and colour adjustments, are applied 
to subsets of the training data to train a child model. The 
performance of such a child model on a validation set 
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serves as a reward signal to iteratively refine the con-
troller using the proximal policy optimisation (PPO) 
algorithm. This automated process eliminates the need 
for manual design of augmentation strategies, enabling 
the discovery of complex and dataset-specific augmen-
tation policies that significantly improve model gen-
eralisation and performance and do not hide relevant 
image features. In particular, AutoAugment within the 
machine learning framework is implemented as ready-
to-use, pre-trained augmentation policies that are divid-
ed into subpolicies, each consisting of two transforma-
tions and applied to images separately.

In the second case, by leveraging pre-trained mod-
els on large datasets, transfer learning allows for the ad-
aptation of these models to specific tasks with relatively 
small amounts of task-specific data (Shin et al., 2016). 
This approach significantly reduces the computational 
resources and training time required while still achiev-
ing high levels of accuracy. In the context of computer 
vision, CNNs pre-trained on large image datasets (like, 
e.g., ImageNet; Deng et al., 2009) are fine-tuned on new 
smaller image datasets, enhancing their ability to perform 
specific image classification or object detection tasks with 
high performance and efficiency (Tan Ch. et al., 2018). 
As the former is particularly valuable for industrial ap-
plications, intensive research is carried out in this area. 

For example, ResNet (residual networks) (He et al., 
2016) introduced the concept of residual learning, en-
abling the training of much deeper networks by miti-
gating the vanishing gradient problem through identity 
shortcut connections. Then, ResNeXt (Xie et al., 2017) 
employed a cardinality dimension, enhancing the mod-
el’s representational power with multiple parallel paths 
within each block. DenseNet (densely connected con-
volutional networks) discussed in (Huang et al., 2017) 
was developed to maximise information flow between 
layers via dense connections, where each layer receives 
the feature maps of all preceding layers as inputs, lead-
ing to more efficient parameter usage and improved 
gradient flow. In 2018, the squeeze-and-excitation net-
works (SENets) (Hu et al., 2018) introduced a  novel 
channel-wise attention mechanism, adaptively reca-
librating channel-wise feature responses, which sig-
nificantly improved the model’s capacity to capture 
complex dependencies between channels. EfficientNet 
(Tan M. & Le, 2019) efficiently scaled the network ar-
chitecture by uniformly scaling all depth, width, and 
resolution dimensions using a compound scaling meth-
od, achieving better performance with fewer parame-
ters. Recently, the vision transformers (ViT) (Dosovits-
kiy et al., 2021) brought a paradigm shift by leveraging 
self-attention mechanisms traditionally used in natural 
language processing and demonstrated that transform-

ers could outperform CNNs on image classification 
tasks. Lastly, ConvNet (Liu et al., 2022) revisited and 
modernised the standard CNN architecture by incor-
porating successful design elements from vision trans-
formers and advanced normalisation techniques.

All of these techniques are more often used by 
various industries in the area of automated non-destruc-
tive testing (NDT), which is crucial for effective quality 
control in smart manufacturing processes. Comprehen-
sive studies indicated that the integration of CNNs has 
significantly enhanced the detection and classification 
of defects in, e.g., metal components. For instance, 
traditional image processing methods are being sup-
plemented or replaced by advanced deep-learning ap-
proaches capable of handling noise, lighting variations, 
and complex textures (Bhatt et al., 2021; Jia et al., 
2024; Niccolai et al., 2021). Some of the research also 
focuses on the application of imaging modalities like, 
e.g. microscopy (Tabernik et al., 2020), thermography 
(Lugin et al., 2023) or X-ray (Yang et al., 2020) in more 
elaborate identification of defects.

However, all of these approaches focus on archi-
tectural improvements and testing various imaging 
techniques, but none prioritise fast and computational-
ly efficient detection or classification model delivery. 
This paper aims to address this issue by employing 
pretrained CNNs in the role of automated feature ex-
tractors, eliminating the necessity of hand-crafting clas-
sifiers with classic computer vision techniques and the 
AutoAugment generated augmentation policies that are 
applied to image-based binary classification of defective 
and non-defective forged components. The concept as-
sumes leveraging transfer learning to enhance the mod-
el’s performance on a small hand-crafted dataset. Addi-
tionally, a comparative analysis will be conducted among 
three deep CNN models (ResNet-18, ResNet-50 and  
SE-ResNeXt-101 (32 × 4d)) to determine the model ar-
chitecture complexity required for this task. ResNet-18, 
a relatively small and simple state-of-the-art model archi-
tecture, will be used as an entry point for model selection.

2. Dataset and pre-processing 

The custom image dataset containing images of both 
defective and non-defective forged components was 
hand-crafted as the starting point of the research. These 
components are specifically banana-like, with rims on 
the inner side surface, which is also the most likely to 
have defects (Fig. 1). The image scene lightning was 
adjusted to avoid focusing light rays through the con-
cave surface of the component. To achieve that, studio 
lighting and shadowless box were used. A significant 
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difference in the illumination of the inner part of the 
rim of the component was observed. Therefore, each 
component was placed on the custom 3D-printed stand 
and photographed in two positions: with a circular re-
cess closer to the bottom (Fig. 1a) and with a circular 
recess closer to the top (Fig. 1b). By capturing images 
from both positions, confidence is ensured that any po-
tentially shaded features were not overlooked or missed 
due to an unfocused upper portion of the photograph. 
This approach has been applied to both defected and 
non-defected component image subsets. 

a) 

 

b)  

Fig. 1. Example of defective (scratch near recess indicated by 
red arrow) and non-defective component: a) recess closer to 

the bottom; b) recess closer to the top

The number of defective components that were 
available for this research is an order of magnitude 
greater than the number of non-defective products. The 
number of images in each set is presented in Table 1. 
The imbalance in the number of images in the sec-
ond approach was mitigated using class augmentation 

techniques. Simultaneously, oversampling with du-
plication of randomly selected images for the class of 
non-defective product images and undersampling with 
a randomly selected minority for the class of defective 
component images were applied to bring the number of 
images in both classes closer to each other.

Table 1. The number of images in each class  
in both approaches, considering class augmentation

Number of images Defective Non-defective
Before class augmentation 452 40
After class augmentation 250 250

The ImageNet profiled AutoAugment generated aug-
mentation policies were randomly applied to each train-
ing set image to avoid quick overfitting to a  relatively 
small dataset and ensure maximal generalisation ability. 
The reason for that is the fact that all CNNs (ResNet-18, 
ResNet-50 and SE-ResNeXt-101 (32 × 4d)) used in train-
ing were pre-trained on the ImageNet dataset. Exemplary 
images after augmentation are shown in Figure 2.

To eliminate irrelevant features from a  dataset as-
sociated with the image white background, an additional 
mask was applied. The mask takes the form of two black 
vertical strips, each one-third of the image’s width, as seen 
in Figure 3. It is worth noting that the mask is applied be-
fore AutoAugment augmentations, so the mask parts are 
treated as input and might change depending on transfor-
mation. The mask was applied during training, validation, 
and testing operations. The dataset was divided into train-
ing, validation, and test sets in a 70 : 10 : 20 ratio.

Fig. 2. Exemplary images augmented with AutoAugment

Fig. 3. Example images with the applied mask and AutoAugment
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3.  Learning process

Model training was performed in a transfer learning re-
gime after building, preparing, and pre-processing the 
dataset. This means that CNNs (ResNet-18, ResNet-50, 
and SE-ResNeXt-101 (32 × 4d)) were used as pre-trained, 
non-trainable feature extractors. ResNet-18 (He et al., 
2016), a lightweight model with 18 layers, is the most 
shallow model from the ResNet family. ResNet-50  
(He et al., 2016), a deeper model with 50 layers, pro-
vides improved feature extraction capabilities due to 
its increased depth. SE-ResNeXt-101 (32 × 4d) com-
bines the advantages of squeeze-and-excitation blocks  
(Hu et al., 2018) with the ResNeXt architecture (Xie 
et  al., 2017), offering a  robust and highly accurate  
model with 101 layers and 32 groups of convolutions 
with a width of 4 channels each.

A single fully connected trainable layer with two 
outputs was added to the last layer of each extractor. 
For ResNet-18, the fully-connected layer received 
512  inputs and produced 2 outputs. For ResNet-50 and 
SE-ResNeXt-101 (32 × 4d), the fully-connected lay-
er received 2048 inputs and produced 2 outputs. The 
outputs from the fully-connected layer were passed 

through a  softmax activation function to provide the 
final class probabilities.

Various hyperparameters were tested and finally 
the best results were provided for 50 epochs, a learning 
rate of 0.002, and a  mini-batch size of 32. The opti-
misation algorithm employed was ADAM (adaptive 
moment estimation) to accelerate the learning process 
and leverage mini-batches. The utilised loss function 
was the cross-entropy loss function, which is suitable 
for classification tasks and measures the performance 
of the model by comparing the predicted probabilities 
to the actual class labels.

As a  result, ResNet-18 and ResNet-50 (Fig. 4a 
and 4b, respectively) hover around the 0.1 threshold, 
reaching it more quickly. In contrast, SE-ResNeXt-101 
(32 × 4d) (Fig. 4c) exceeds this threshold, achieving 
the lowest error in the entire analysis.

As can be seen, the validation error quickly (after 
a few epochs) reaches very low values and maintains them 
while the training error decreases slowly. In this case, the 
training error plot is much more important than the vali-
dation error plot, as it indicates the model’s generalisation 
ability. The continuous maintenance of a validation error 
close to zero confirms the absence of overfitting.

a)

   

b) 

c)

 
Fig. 4. Loss function values by epoch number: a) ResNet-18; b) ResNet-50; c) SE‑ResNeXt 101 (32 × 4d)
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4. Model evaluation

To confirm the model generalisation ability, data eval-
uation was conducted exclusively on the images avail-
able in the test set. Metrics considered include accuracy 
and recall for defective elements. Recall for defective 
elements is particularly important from the perspec-
tive of analysis, as the potential acceptance of a defec-
tive product during the quality control process in the in-
dustry is significantly more detrimental than rejecting 
a product without defects. 

Additionally, an evaluation was conducted on 
the test set with applied augmentation to assess the 
potential generalisation capabilities of the developed 
models. The reason for this was an exceptionally high 
performance of all three models on the test set with-
out augmentations – perfect classifier performance was 
achieved, as shown in Table 2. The advantage of apply-
ing the AutoAugment augmentation strategy over the 
testing dataset was that the model was given unknown 
data additionally impeded by advanced augmentation. 
Thus, an additional generalisation abilities check might 
have been performed given the scarce dataset. More-
over, to provide robust results, the investigation was 
conducted within 50 full iterations over a test set since 
the implementation of AutoAugment augmentation 
strategy assumes that for each image in a batch, a par-
ticular subpolicy (with its probability and magnitude) 
is chosen randomly. The results of both evaluation ap-
proaches (with and without AutoAugment) are present-

ed in Table 2, with averaged results obtained from the 
former approach. 

As can be seen above, the apparently perfect clas-
sifiers perform differently when tested on an augment-
ed test set. With the AutoAugment strategy applied, 
a  slight reduction in accuracy was observed; similar-
ly, recall scores also show a slight decrease. However, 
this decrease tends to be more pronounced as model 
complexity increases, which is in contrast to the trend 
observed within accuracy scores.

Additionally, the results obtained from the aug-
mented evaluation are presented visually in Figure 5 in 
the form of confusion matrices to display the evalua-
tion details more precisely.

Table 2. Accuracy and recall of evaluated models depending 
on the test set preparation approach

Accuracy
approach ResNet-18 ResNet-50 SE‑ResNeXt‑101 

Without  
AutoAugment 1.0 1.0 1.0

With  
AutoAugment  
(avg. of 50)

0.9668 0.9778 0.9860

Recall
approach ResNet-18 ResNet-50 SE‑ResNeXt‑101 

Without  
AutoAugment 1.0 1.0 1.0

With  
AutoAugment  
(avg. of 50)

0.9904 0.9860 0.9832

a) 

  

 b) 

c) 

Fig. 5. Confusion matrices obtained in augmented evaluation for: a) ResNet-18; b) ResNet-50; c) SE-ResNeXt-101 (32 × 4d)
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The numbers presented in Figure 5 represent pre-
dictions summed over 50 full iterations on a  test set 
containing 100 images, resulting in a total of 5000 pre-
dictions and ensuring trends and observations described 
above, providing the broader context of the evaluation 
process than metrics alone. 

5. Conclusion

In this research, the training and evaluation of three 
deep learning models were performed based on a scarce 
dataset of images of forged components. Additional 
augmentations over the dataset were conducted and an 
additional evaluation was performed, leveraging the 
AutoAugment-generated augmentations to confirm the 
robustness of the model. 

It has to be emphasised that the selection of the 
best model usually depends on the business and indus-
trial requirements and applications. ResNet-50 can pro-

vide the balance between accuracy and recall; however, 
if maximising one of them is crucial, then choosing one 
of the other models would be a solution.

The application of the AutoAugment augmenta-
tion strategy turns out to not only be useful in the learn-
ing process when dealing with scarce hand-crafted 
datasets but also as a  potential generalisation abili-
ty indicator when the original test set appears insuf-
ficient. However, AutoAugment indications must be 
verified in real-world tests that could ultimately prove 
right aggressive augmentation strategy. Such proof 
would result in obtaining a new way of ensuring model 
robustness before testing under production conditions.
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