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Abstract

In our earlier work, a stochastic model of multi-stage deformation at elevated temperatures was developed. The model was
applied to calculate histograms of dislocation density and grain size at the onset of phase transformation. The histograms were
used as input data for the simulation of phase transitions using the traditional deterministic model. Following this approach,
microstructural inhomogeneity was predicted for different cooling conditions.

The results obtained, showing the effect of dislocation density and inhomogeneity of austenite grain size on the microstruc-
tural inhomogeneity of the final product, can be considered reliable as they are based on material models determined in previous
publications and validated experimentally. The aim of the present work was to extend the model by taking into account the sto-
chastic nature of nucleation during phase transitions. The analysis of existing stochastic models of nucleation was performed,
and a model for ferritic transformation in steels was proposed. Simulations for constant cooling rates as well as for industrial
cooling processes of steel rods were performed. In the latter case, uncertainties in defining the boundary conditions and segre-
gation of elements were also considered. The reduction of the computing costs is an important advantage of the model, which
is much faster when compared to full field models with explicit microstructure representation.

Keywords: stochastic model, grain size, phase transformations, dislocation density, cooling of rods, heterogeneity of the mi-
crostructure.

in the second half of the 20" century (Gladman, 1997).

1. Introduction

The continuous development of the industry is related to
the search for processing routes which allow construc-
tion materials with high strength, good formability and
a high strength-to-density ratio to be obtained. Steels
have met these requirements for many decades. Grain
refinement has historically been the primary strength-
ening mechanism for steels and was studied during the
development of high-strength low-alloy steels (HSLA)
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By controlling precipitation and its influence on recrys-
tallization and strengthening, strength and workability
were significantly improved (Isasti et al., 2014). Mod-
ern multiphase steels which were developed in the last
decades of the 20" century employ different strength-
ening mechanisms. These steels consist of soft ferrite
and hard bainite, martensite and islands of retained
austenite. The distribution of these constituents is at the
macroscopic scale due to the spatial distribution of the
volume fractions of the microstructural components.
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Advanced numerical models that can predict micro-
structural heterogeneity are needed to gain insight into
the distribution of microstructural features and to de-
sign thermomechanical cycles for optimal microstruc-
ture and resulting properties. In the work by Szeliga
et al. (2019) it was hypothesized that applying stochas-
tic internal variables to the modelling of multiphase
steels would allow the construction of models capable
of predicting the various characteristics of heteroge-
neous microstructures.

Although a variety of material models of varying
complexity and predictive ability have been developed
(Pietrzyk et al., 2015), mean-field models are still wide-
ly used for material processing design. The limitations
of the current process design methodologies stem from
the limited predictive capabilities of these models. This
becomes even more important when the prediction of
distributions of microstructural parameters rather than
average values is required. This is specifically required
to improve the impact and fracture toughness of con-
structional materials. The problem of reliable model-
ling of heterogeneous microstructure has been solved
by full field models, which use RVE (Representative
Volume Element) to explicitly represent the micro-
structure. Applications of the Cellular Automata (Song
et al., 2015), the phase-field method (Militzer, 2012)
and the FE+LSM (Finite Element + Level Set Method)
(Bzowski et al., 2021) have become common during the
last two decades. Although these methods can reliably
reproduce microstructure evolution, they require long
computing times, which is not acceptable when design
and optimization of processes are needed. Decreasing
computing costs is a crucial task in the present work.

With this motivation in mind, the authors devel-
oped a stochastic model describing the evolution of
dislocation density and grain size during multi-stage
deformation. The analysis and optimization of the
numerical parameters of the model is described in
(Klimczak et al., 2022), while its detailed description,
identification, validation and application in hot rolling
is presented in (Szeliga et al., 2022a). The model cal-
culates histograms of dislocation density and grain size
after multi-stage deformation. On the other hand, the
properties of the final product are maintained by con-
trolling the phase transformation during cooling after
deformation. Therefore, our work aimed to extend the
model by including the phase transformations during
cooling. Accounting for the random character of nu-
cleation of a new phase is the first step towards this
objective. The model will also have the capability to
account for the uncertainty of the boundary conditions
and for the segregation of elements in the banded mi-
crostructure.

A literature review shows that stochastic mod-
els have been widely used to describe the random
nucleation process during phase transformations.
However, the majority of the published approaches
consider nucleation in the microstructure represented
explicitly (full field models). Probabilistic methods
have been used in cellular automata models to se-
lect nucleation sites or growth directions (Czarnecki
et al., 2021; Wang et al., 2014), and in Monte Car-
lo methods (see Liu et al., 2018) for a review. Rios
et al. (2009) consider atomic nuclei located in space
in terms of heterogeneous Poisson point processes.
They performed computer simulations of point pro-
cesses in square regions, but the spatial distribution
of nucleation probabilities was known a priori. Our
objective is to avoid costly computations on the mi-
crostructure represented explicitly and to develop
a mean-field model based on a statistical description
of the phenomena occurring in the microstructure.
For steels, the model must be based on the theory
of nonclassical nucleation that occurs in diffusional
growth, where the diffusion field leads to a decrease
in the probability of nucleation around the growth
nucleus (Bruna et al., 2006). This aspect is consid-
ered in the present work.

Statistical models of nucleation exploiting the
“Correlation-Functions” and the “Differential-Critical-
Region” were used in (Tomellini & Fanfoni, 2014).
It was proved that both methods are suitable for de-
scribing phase transformations governed by nucle-
ation and growth. An analysis of these two approaches
is presented in (Tomellini & Fanfoni, 2014), with an
emphasis on transformations governed by diffusional
growth, which cannot be described by the JIMAK theo-
ry. However, this solution requires numerical calcula-
tions of integrals to infinity for many points and is still
computationally expensive. Therefore, we focused on
the search for a simple model of the probability of nu-
cleation, one based on our knowledge of the physical
aspects of nucleation.

The general objective of the research described
in this paper was a review of publications on the sto-
chastic models of nucleation and the formulation of the
physical and theoretical background for a model which
would account for the random character of nucleation
of new phases. On the basis of this review, a probabil-
ity of the nucleation was defined and introduced in the
evolution equation. In the first approach, we assumed
a stochastic character of the nucleation and a determin-
istic equation describing the growth of the new phase.
Consequently, the opportunity to predict the heteroge-
neity of the ferrite grain size and phase composition in
the final product was created.
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2. The general idea of
the stochastic
phase transformation model

In the model under development, the equilibrium state
of the metallurgical system is described by thermo-
dynamics. The phase transformation model predicts
changes to the state of the system between the two
equilibrium states during the transient process. The
equilibrium is represented by the Fe-C phase equilib-
rium diagram. The following equations obtained from
the approximation of the phase boundary lines in this
diagram are used as the boundary conditions in the
model:

— equilibrium carbon concentration in the austenite

(at the y/o interface):

+c T (1)

c o = CyaO yal

Ve

— maximum carbon concentration in the austenite
(at the y/cementite interface):

c +c.T 2)

1 — Cypo yB1

In Equations (1) and (2) temperature 7 is in Cel-
sius degrees and €000 Cat> Cop0 and C,p Are coefficients,
which in our case are determined using ThermoCalc
software.

The development of a stochastic phase trans-
formation model for diffusion-controlled transfor-
mations is our future objective. The models, which
account for the probability of both nucleation and
growth, can be encountered in the scientific litera-
ture, but they are based on the explicit representation
of the microstructure (Lyrio et al., 2019; Rios et al.,
2009) and are computationally expensive. Moreover,
several published models deal with the solidification
process (Maggioni, 2018) or solid-state phase trans-
formations in materials other than steels (Helbert
et al., 2004). Thus, in the first approach, we focus on
modelling of the random character of the nucleation
only and a deterministic model is used to describe the
growth of the new phase.

3. Nucleation

3.1. State-of-the-art
for nucleation

Nucleation is the first step in all phase transformations
occurring in steels. In order to simulate nucleation, it
is necessary to specify where the nuclei are located in
space and how the nuclei appear as a function of time.
In the classical IMAK theory (Johnson—-Mehl-Avrami—

Kolmogorov) theory (Avrami, 1939; Johnson & Mehl,
1939; Kolmogorov, 1937), there are two main nucle-
ation modes (Liu et al., 2018):

Classical nucleation theory assumes that the ther-
modynamic properties of the nucleus are homogeneous
and identical to their equilibrium volume counterparts
within the nucleus, and that the interface between the
nucleus and the parent phase is sharp. The nucleation
rate depends on the number of critical nuclei, which is
determined by the activation energy barrier for hetero-
geneous nucleation and the jumping frequency of sol-
ute atoms across the interface, following the Arrhenius
equation.

NT(1)]=Co exp{—w} 3)
RT(t)

where: N — rate of nucleation; C — the density of nu-
cleation sites; ® — the frequency factor; AG, , — the
activation energy barrier of heterogeneous nucleation;
O, — the activation energy of atomic migration across
interface; T — temperature; ¢ — time.

Classical nucleation models include: a) sequen-
tial nucleation model, b) pre-existing nucleation mod-
el, ¢) Avrami nucleation model and d) hybrid nucle-
ation model. All these models are described in (Liu
et al., 2018). The equations describing the nucleation
rates of the first three models are given in Table 1,
where: N, — temperature-independent nucleation rate;
N° — number of nuclei already present per unit vol-
ume; & — Dirac function; ¢ — cooling rate; A — fre-
quency at which particles (nuclei) of supercritical size
change to particles of subcritical size, following the
Arrhenius equation; N' — the number of subcritical
particles at £ = 0.

However, the nucleation process may involve
multiple nucleation mechanisms known as hybrid nu-
cleation. The nucleation rate of this model is equal to
the weighted sum of the nucleation rates in Table 1.

The non-classical nucleation theory of Cahn and
Hilliard is based on the description of interfaces by
diffusion (or gradient thermodynamics). In this theory,
the coalescence and stepwise nucleation of subcritical
clusters are introduced by Ou et al. (2022). Heo et al.
(2014) provide a brief overview of recent advances in
modelling nucleation during solid-phase transitions
based on non-classical descriptions of diffusion inter-
faces or key nucleation profiles. A method for mod-
elling phase transition dynamics based on differential
critical regions and correlation functions is described
in the work by Tomellini & Fanfoni (2014). This publi-
cation also compares these methods.
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Table 1. Equations describing the nucleation rate for different models

Model Equation Equation number
1. Continuous nucleation model N[T(t)]= N, o EXp _ O 4
RT(¥)
- T -T(t

2. Pre-existing nucleation model N[T(t)]=N- 6{0—()} 3)
¢

3. Avrami nucleation model N[T(t)]= AN'exp |:—j kdt:| (6)
0

3.2. Stochastic approach
to modelling nucleation

From the outset, a stochastic character of nucleation
has been accounted for in the modelling of phase trans-
formations, with the JIMAK approach based on Poisson
statistics being used for many years. Although most
of the published papers deal with the crystallization
process, solid-state transformations have also been ad-
dressed in many publications. Early papers on the sto-
chastic approach to nucleation focused on the study of
a random phenomenon such as nucleation by collecting
a set of large nucleation data (Izmailov et al., 1999). 1z-
mailov et al. (1999) performed nucleation experiments
under the same conditions many times. This approach
allowed them to obtain nucleation statistics.

The stochastic models of nucleation have been in-
tensively developed during last few decades. The fol-
lowing assumptions for these models were formulated
in the work by Helbert et al. (2004):

— The transformation occurs by nucleation and
growth: it is believed that nuclei form at the sur-
face of the parent grain and grow inward. Tem-
perature is only a function of time.

— Nucleation is the process by which atomic nuclei
emerge in space and time. Assuming it is a sto-
chastic process, or rather a space-time Poisson
process (Stoyan et al., 1987), the average nucle-
ation frequency is expressed as the number of nu-
clei formed per unit time and per unit surface area
(in two dimensions).

— The growth process is deterministic and spatially
uniform. For non-isothermal reactions, the radial
growth rate v, is a function of time.

The main stochastic nucleation model is based
on a uniform Poisson point process and assumes that
the crystallites are randomly distributed in space. This
is how the phantom grows at the core of the phantom,
sometimes in areas that have been transformed. This

leads to a non-randomly occurring phenomenological
equation in which the transformation fraction, X{(¢), at
time ¢ is related to the enhanced JMAK volume frac-
tion, X, by the relationship:

dx (f)
dxX

E

=[-X@®7 7)

In the work by Tagami & Tanaka (1997) it is shown
that the exponent is expressed as i = 2 — &, where & is
the “overlap factor,” which accounts for the probability
of the overlap between a phantom and a nucleus. This
idea of the overgrowth of the phantom nuclei is used in
several papers dealing with stochastic modelling of the
nucleation.

As already mentioned, no correlation among
nuclei is present in the homogeneous Poisson Point
Process and, in the case of steels, the probability of
a nucleus to appear depends on such parameters as un-
dercooling below A4 ,, state of the austenite, etc. Thus,
assuming Poisson homogenous nucleation and based
on the fundamental knowledge regarding nucleation
(Clouet, 2009), the probability that the nucleus of the
new phase occurs in the time Az =t — ¢ is:

p) if

1 otherwise

P[&(n-)=01={ pe)<l

P[E(7) =1]=1-P[E(z,) = 0]

In Equation (8) p(¢) is a function which bounds
together the probability that the material point becomes
a critical nucleus in a current time step and present state
of material. This probability is based on the following
knowledge about nucleation sites: nucleation rate in-
creases with an increase of the undercooling below 4
temperature, grain boundaries and shear bands in the
deformed microstructure are the most favourable nu-
cleation sites.

Based on this knowledge, and assuming Poisson ho-
mogenous nucleation, the following equation was used:
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p(f,-) _ le«;Z’Zpb3 (AeS _T)b4 (9)

where: Dy — grain size; p — dislocation density; b, b,,
b,, b, — coefficients.

In the numerical solution, in each time step, a ran-
dom number s € [0,1] is generated and compared with
the probability p(z). If the latter is larger, the variable
(¢) = 0, and the nucleus of a new phase occurs.

In Equation (9), grain size and dislocation den-
sity are stochastic variables, which are calculated by
the model described in publication by Szeliga et al.
(2022a). Coeflicients b , b, b,, b, can be determined by
the inverse analysis of the experimental data (Pietrzyk
etal., 2016).

Intensive progress in the development of the sto-
chastic nucleation models has been made in the 21 cen-
tury. The mathematical background of these models is
still based on the statistical methods, which include
Poisson point processes. As previously, the transfor-
mation kinetics is described by the IMAK equation
(Avrami, 1939; Johnson & Mehl, 1939; Kolmogorov,
1937), which is based on Poisson statistics (no cor-
relation among nuclei is present). Rios & Villa (2009)
revisited the classical IMAK theory and generalized it
for situations in which nucleation took place both for
homogeneous and for inhomogeneous Poisson point
processes. In the latter intensity of nucleation varies
in space. Inhomogeneous Poisson point process nucle-
ation is generally used to account for the heterogeneity
of the nucleation sites. In the simulations performed in
the work by Rios et al. (2009) nuclei distributed are
in space with intensity varying according to a certain
function known a priori. Here, X and X, are replaced by
the position-dependent mean bulk density X(z, x), mean
extended volume density X,(¢, x), where x = (x, x,, x,)
are the position coordinates. Thus, the relationship be-
tween the volume fraction and the expanded volume
fraction becomes the relationship between the average
bulk density and the average expanded bulk density.
The mathematical details of the solution can be found
in publication by Rios & Villa (2009).

An example of the solution to this problem assum-
ing site-saturated nucleation and intensity of nucleation
distributed linearly along one of the coordinates is pre-
sented by Rios et al. (2009). For the Poisson point pro-
cesser, we obtain:

M (x)

PIN(A) =k]= TGXP[—%(X)] (10)

where: p[N(A) = k] — the probability of £ nuclei falling
within the unit volume 4; A(x) — function describing the
distribution of the intensity.

In the solution described by Equation (10) the
function A(x) has to be known. Our objective is to intro-
duce statistical interaction between existing grains of
a new phase and a new nucleus. The solution is based
on the critical section approach (Alekseechkin, 2000).
Let us find the probability p(f) that a randomly cho-
sen point O transitions to a new phase within the time
interval A¢. For this, the following two conditions are
sufficient and necessary: a) point O is not transformed
before time #; b) a new phase nucleus capable of trans-
forming point O within the time interval [z, ¢, + Af]
appears at any time ¢/, 0 < ¢ < ¢. By combining the
probabilities of the first event and the second event,
we obtain a nucleation probability that takes into ac-
count the correlation between the nuclei and the exist-
ing grains of the new phase:

p(t)=bD,"p" (4, ~T)"[1- X (2)] (11)

where: X(¢,) — volume fraction of a new phase in the
time 7.

In the case of the austenite decomposition, carbon
is pushed out from the ferrite grains and carbon content
in the austenite c, increases (see next chapter). Thus,
the probability of nucleation in the neighbourhood of
the new ferrite grains is decreased. This effect can be
easily accounted for in the full field model, in which
the solution of the carbon diffusion is performed. In our
model, we introduced a statistical approach based on
the average carbon content in the austenite. The idea of
this stochastic approach to modelling austenite-ferrite
transformation is shown in Figure 1. Thus, the Equa-
tion (11) is revised to the following form:

() =b,D,"p" (4, =T)"[1- X(zl-)]{c"’“c_ - ] (12)

v

where: ¢, — carbon content in steel; ¢ — average carbon
content in the austenite, see Equation (17) in the next
chapter.

1
g . |
g ! Ferrite Austenite i
51 1
Ol ‘I
g T 1 Co
..EI '
1= H 1
o! ' 1
[ A E— : !
i i o e e o o i S i Y i) -ty
L L ) x

Nucleation forbidden Decreased probability

Fig. 1. Carbon distribution as a function of distance from

ferrite grain centre and the idea of the stochastic approach to
nucleation model based on critical region method
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Associated nucleation is also induced in
stress-driven switching, where the strain field imparts
a degree of spatial ordering to the nuclei (Bruna et al.,
20006), but this is not considered in the current work.
Recapitulating, we will consider two mechanisms of nu-
cleation in our stochastic model. One is the continuous
nucleation model, based on Poisson statistics, in which
the nucleation rate is constant at constant temperature
(model 1 in Table 1). The other is the non-classical nu-
cleation model, in which growing nuclei of the new
phase and carbon diffusion give rise to reduced nucle-
ation probability around this nucleus.

3.3. Modification of
the model accounting
for the effect of
microchemical segregation bands

The solidification process occurs when the dendrites
enter the liquid region. As the interface progresses,
some solutes are incorporated into the dendrites, while
others are released into the fluid. This distribution ef-
fect can lead to concentration gradients that lead to
microchemical banding (Rivera-Diaz-Del-Castillo
et al., 2004). In our model, we will account for the
difference in the manganese content between the seg-
regation bands (high Mn, Si, ...) and the distance
between the bands (low Mn). Our objective was to
include the effect of manganese segregation into the
probability of ferrite nucleation defined in Equation
(12). The independent variables in the model were
the width of the manganese enriched band w and the
distance between the bands d. The improved model
accounts for a difference in the nucleation rate and the
grain size between high and low manganese bands.
The driving force for the transformation of austenite
to ferrite depends on the Mn concentration and thus
varies between microsegregation layers — ferrite tends
to form in the Mn-poor bands. On the basis of this
knowledge, we proposed the introduction of coeffi-
cient b, in Equation (12) in a certain interval [b
b,....J and to revise this equation as follows:

Imin”

p(t)=[b, (1-8) + blminé]D«;thbl (4 - T)b4

" [I_Xf(ti)](Cycx_cyj (13)

&

where & = w/d — relative thickness of the high manga-
nese band.

The b, , andb  coefficients were determined by
inverse analysis of the experimental data.

3.4. Growth

As mentioned earlier, the core growth model is deter-
ministic. It is based on an upgrade of the Leblond model
(Leblond & Devaux, 1984), which describes the growth
kinetics of new phases. The model is based on differen-
tial equations with respect to time and does not require
the application of additivity rules as the temperature
varies in the process. This is the main benefit of this
approach. The original Leblond model assumes that the
conversion rate is proportional to the distance from ther-
modynamic equilibrium at a given temperature:

XO _prx (1)~ x(0)]

& (14)

where: ¢ — time; X — volume fraction of a new phase;
X, - equilibrium volume fraction of the new phase in
the temperature 7;; B — material constant.

In Equation (14) the equilibrium fraction of the
new phase in the current temperature is calculated from
the equation:

Fr _¢u@—c
F ¢ (T)—c,

f max

X, (T)= (15)

where: F T equilibrium volume fraction of the con-
sidered phase in steel at the current temperature 7;
Fo— maximum volume fraction of this phase in the steel.

The effect of grain size on the phase transition is
considered. In addition to temperature, the coefficient B
in Equation (14) also depends on the state of the mate-
rial before the phase transition. In our case, this state
can be described by two internal variables: dislocation
density and grain size, but only the latter is considered
in the present work. The ferrite transformation coeffi-
cient B is defined as:

(16)

a |T B a7| “
B, =a,D" exp| ——
. ag
where: D — austenite grain size prior to transformation;
a, a, a, a,, a,, — coefficients.

Grain size is a stochastic variable and is calculat-
ed using the model developed for hot deformation. The
mathematical background of the Monte Carlo solution in
this model is described by Klimczak et al. (2022). The
formulation of this model for the multistep deformation,
as well as identification and validation of the model, are
described in publications by Szeliga et al. (2022a, 2022b).
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Modelling of phase transformations begins with
an Equation (14) when the temperature drops below 4 ,
nucleation of the ferrite occurs. The transformed ferrite
volume fraction X/(7) is calculated with respect to the
equilibrium volume fraction of ferrite X at the eutectic
temperature. Thus, the volume fraction of ferrite with re-
spect to the whole volume of the material is F=X X
When the volume fraction of ferrite increases, carbon is
pushed out into austenite and the average carbon content

in the latter increases following the formula:

(=X ,c,)

The simulation continues until the transformed
volume fraction reaches 1. However, when the average
carbon content in austenite exceeds the limit ¢, given
by Equation (2), the austenite-pearlite transformation
starts in the remaining volume of austenite. The kinet-
ics of pearlite transformation is described by Equa-
tion (14), where the coefficient B is defined as:

T— a9
B, =a,D" exp( "”) (18)

alS

where: a, ,a,,a,.,a

1 @,9> @, — coeflicients.

16> 7177

When the temperature is lower than the bain-
ite transformation start temperature of the state vari-
able a,, the bainite transformation starts. The kinetics
of pearlite transformation is described by Equation
(14), where the coefficient B has been defined as:

B = Do ﬂ “29
» = Uy exXp (19)
Qyg

where: a. ,a,,a,.,a — coefficients.

26° 27 28 29’

At temperatures below the martensite initiation
temperature, the remaining austenite transforms into
martensite. The martensite transformation start tem-
perature is a function of the current average carbon

concentration c, in the austenite as follows:

M, =a, (20)

- a32c7

where: a, , a,, — coefficients.
The volume fraction of the martensite is calculat-
ed from the Koistinen and Marburger equation (Koisti-

nen & Marburger, 1959):
X, =l-exp[-a,,(M,-T)"*] (21

where: a,,, a,, — coefficients.

Equation (21) expresses the volume fraction of
martensite relative to the remaining austenite volume
at temperature M. The volume fraction of martensite
relative to the total volume of the material is:

Fm:(l—Ff—Fp—Fb)Xm (22)

where: F,F,F, ~ volume fractions of ferrite, pearl-
ite and balmte w1th respect to the whole volume of the
sample.

The model contains several coefficients, which are
grouped in the vector a = {a , ..., a,,}". These coeffi-
cients are identified on the basis of dilatometric tests
performed for the investigated steel. The inverse ap-
proach described by Rauch et al. (2018) was used. The
same inverse algorithm was used for the identification
of the coefficients b, — b, in the nucleation model and
the ferrite grain size model.

The flow of the calculations for the whole mod-
el is shown in Figure 2. For each Monte Carlo point,
the initial dislocation density is drawn assuming the
Gauss distribution with the expected value p, and the
initial grain size is drawn assuming the Weibull distri-
bution with the expected value D (see Szeliga et al.,
2022a for details).

0,(z,)

[1t,=0 ou,)=10°

E For j=1,Np

laraw : oz, )—pn(t,.), D(,)=D, (7, )|

| Fort—lJVt |<-| | 5

[Hot deformation model [9] ]

1()=1,, D,=

F,=0, k=14

1) +fr =13

Trans
2(P)

Fig. 2. The flow of the calculations for the whole model
composed of the hot deformation and cooling parts: 7, — pre-
heating temperature; ¢, — preheating time; D — average grain
size after preheating; B, M — bainite and martensite start
temperatures, respectively; ¢, — current carbon concentration
in the austenite; Cp — equilibrium carbon concentration at
the y-cementite interface; Np — number of the Monte Carlo
points; Ns — number of time steps.
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Deterministic phase transformation models com-
bine nucleation and growth in one equation, with the
JMAK equation being the most often used. Since it is
an exponential equation with coefficients dependent on
the temperature, it cannot be directly applied to pro-
cesses in varying temperatures. Therefore, in our mod-
el, the growth kinetics of the new phase is described
by the ordinary differential Equation (14) based on the
Leblond model (Leblond & Devaux, 1984).

3.5. Ferrite grain size

In steels with a carbon equivalent Ceq = (C + Mn/6) be-
low about 0.45, ferrite and pearlite transformations occur
at low cooling rates. The main parameter of interest here
is the ferrite grain size. Ferrite grains have been shown
to nucleate at austenite grain boundaries, strain bands,
second phase grains and recovered subgrain boundaries,
especially when decorated with precipitates. Factors af-
fecting the ferrite grain size are the final austenite grain
size (before phase transformation) and residual strain
due to incomplete recrystallization, which are external
parameters. Retained strain applies to strain that was not
removed by recrystallization prior to transformation.
Various general relationships for ferrite grain size have
been proposed in the literature, some of which are sum-
marized in (Lenard et al., 1999). The deterministic equa-
tion proposed by Hodgson & Gibbs (1992) is one of the
most commonly used equations in traditional modelling:

D, =(1-0.45¢,*){(-0.4+6.37C, )

+(24.2-59C, )C; +22[1 - exp(~0.015D )]} (23)

where: € — retained strain; Ceq — carbon equivalent;
C. — cooling rate; D, - austenite grain size prior to
transformation [pum].

This equation is suitable for the continuous cool-
ing processes, and it cannot be applied to the isothermal
transformations. Therefore, on the basis of the Equa-
tion (23), in our stochastic model, we proposed a new
relationship with the average temperature of transforma-
tion as an independent variable. It was assumed that the
ferrite grain size depends on the austenite grain size dis-
tribution, austenite deformation, average temperature of
the ferritic transformation and probability of nucleation:

Dy
D, =b——L—p" (24)
! ’ (Ae3 - T/zw)h2<
where: D, - austenite grain size prior to transforma-

tions; p — dislocation density; b, b., by, b, — coeflicients.

In Equation (24) an average temperature of the
ferritic transformation is calculated as:

1 Nt
Tfav = _ZI(YZAX/’)
7=

(25)

where: T, — temperature in the i-th time step; Nt — num-
ber of time steps during ferritic transformation; X - fi-
nal ferrite volume fraction; AXf— increment of the fer-
rite volume fraction in the i-th time step.

In the present work recrystallization of the aus-
tenite was completed before the beginning of the
phase transformations and the coefficient b, = 0 was
assumed. After identification of the coefficients b,
b,and b,, the results obtained from Equations (24)
and (23) for constant cooling rates and for & = 0 were
similar.

3.6. Numerical tests of
the model

In order to evaluate the model’s performance, nu-
merical tests were carried out and constant cool-
ing rate experiments were simulated. The austenite
grain size prior to transformations was introduced as
a histogram, which was measured in the experimen-
tal samples after austenitization in the dilatometric
tests. The average ferrite grain sizes for the following
cooling rates 0.05°C, 0.2°C, 0.5°C, 2°C and 5°C were
10.5 um, 9.9 um, 9.3 pm, 8.3 um, 7.7 um, respective-
ly. Calculated distributions of the ferrite grain size for
different cooling rates are shown in Figure 3. These
results confirm the qualitatively good predictive capa-
bility of the model. With the increasing cooling rate,
the distributions of the ferrite grain size move towards
lower values.

0.7 - Cooling rate, °C/s
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Fig. 3. Calculated distributions of the ferrite grain size for
different cooling rates
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4. Measurement methodology
and research results

4.1. Methodology

Due to the incomplete etching of ferrite grain bound-
aries (Fig. 4a), in the first stage of the analysis,
boundaries corrections were made for better and eas-
ier detection (Fig. 4b). In the next step, the ferrite
grain size was measured using Met-Ilo v12.1 soft-
ware. In the first step, k-means binarization of the
bright phase was carried out. Then, manual correc-
tions were made for elements that were not included
or elements that were mistakenly analysed during bi-
narization and also for elements below 3 pixels that
were artefacts created in the metallographic process
of preparing specimens. The final effect of the detec-
tion is shown in Figure 4c.
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4.2. Results

The stochastic model predicts distributions (histograms)
of parameters such as volume fractions of phases and size
of the ferrite grains. A simulation of the cooling of the
flat rod with a thickness of 28 mm made from steel con-
taining 0.12% C and 1.3% Mn was performed and the re-
sults were compared with the experiment. The measured
time-temperature profile, which was used as an input for
the phase transformation model, is shown in Figure Sa.
Since the difference in the temperatures in the two loca-
tions is small, only the results for the centre of the rod are
presented below. The time-temperature profiles shown in
Figure 5 and the samples after cooling were subject to mi-
crostructure analysis. The microstructure after cooling is
shown in Figure 5b. The ferrite/pearlite bands are clearly
seen in this figure. The measured distance between the
high and low manganese bands was 25.8 pm, and it var-
ied in a wide range between 11.2 um and 39.2 pum.
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Fig. 4. Ferrite grain size detection procedure: a) output image; b) image after correction of grain boundaries;
c) final detection image
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Fig. 5. Measured time-temperature profile during cooling of the 28 mm thick flat rod (a) and microstructure
after cooling with ferrite/pearlite bands (b)
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In Figure 6, the calculated distribution of ferrite
grain size is compared with the measured value. Fair-
ly good agreement was obtained between calculations
and measurements. The calculated histogram of ferrite
volume fraction after cooling, accounting for the statis-
tical character of the phase transformation, is shown in
Figure 6. The measured average ferrite volume fraction
was 0.82.
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Fig. 6. Comparison of measured and calculated ferrite grain
size histograms

The properties of final products depend on the
ferrite grain size and the phase composition. The
model calculates the stochastic distribution of these
parameters, therefore, it can be used to evaluate the
uncertainty of the predictions of mechanical prop-

5. Conclusions

A model based on the heterogeneous Poisson point pro-
cess was proposed for ferritic transformation. Numeri-
cal simulations lead to the following conclusions:

— The model belongs to the mean field models, and
it does not require an explicit representation of the
microstructure. As a consequence of this, comput-
ing times could be radically decreased compared
to full field models.

— The predictive capabilities were extended compared
to the conventional mean field models. The model
statistically predicts the distribution of microstructur-
al features instead of their average values. It allows
the calculation of distributions (histograms) of se-
lected parameters, taking into account the state of the
microstructure before transformation, including the
influence of microchemical bands. The uncertainty
of the boundary conditions can also be accounted for.

— Since the mechanical properties of final products
(strength, elongation) depend on the ferrite grain
size and the phase composition, the model can be
used to evaluate the uncertainty of the predictions
of these properties.
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