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Abstract:
The aluminum profile extrusion process is briefly characterized in the paper, together with the presentation of historical, au-
tomatically recorded data. The initial selection of the important, widely understood, process parameters was made using sta-
tistical methods such as correlation analysis for continuous and categorical (discrete) variables and ‘inverse’ ANOVA and 
Kruskal–Wallis methods. These selected process variables were used as inputs for MLP-type neural models with two main 
product defects as the numerical outputs with values 0 and 1. A multi-variant development program was applied for the neural 
networks and the best neural models were utilized for finding the characteristic influence of the process parameters on the 
product quality. The final result of the research is the basis of a recommendation system for the significant process parameters 
that uses a combination of information from previous cases and neural models.
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1. Introduction

The extrusion process is one of the most popular and 
effective manufacturing technologies for a large variety 
of aluminum profiles. It is a process in which complex 
mechanical, thermal and surface phenomena take place. 
Its implementation requires specialized machinery and 
tooling. The process itself must be strictly controlled to 
prevent product defects, the most common of which are 
various surface defects (especially scratches) and de-
viations from the assumed geometry. These issues are 
widely described in the professional literature, where 
there are guidelines for product and tooling design, 
as well as setting the process parameters (Aluminum 

Extruders Council, 2018, p. 200; ASM International, 
2005; Bauser et al., 2006; Laue & Stenger, 1981; Le-
sniak & Libura, 2007; Pilar Noriega & Rauwendaal, 
2010; Sheppard, 1999; Zasadziński et al., 2004; Zhu 
et al., 2012). In practice, however, such defects appear 
and are associated with various types of losses for the 
company. Their causes are often hidden and may be re-
lated to incorrect settings of the process parameters, the 
tooling design and quality and human errors occurring 
at various stages of the preparation and running of the 
process.

Modern manufacturing systems ensure the mea-
surement and recording of the most important parame-
ters. Such databases can be used to obtain useful knowl-
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edge about the processes, including the impact of their 
parameters on the quality of the product. There are cur-
rently many examples of data mining and data-driven 
modeling applications for diagnostics and optimization 
of manufacturing processes in the literature. They apply 
to both discrete processes (typical for such industries 
as machine-building, automotive, electrical, aircraft) as 
well as continuous, i.e. processing (chemical, fuel, food, 
pharmaceutical, etc.); some of them are quoted and char-
acterized in (Köksal et al., 2011; Perzyk et al. 2014; Qin, 
2012). Nevertheless, the authors of this article are not 
aware of the applications of this type of tool in the con-
trol and diagnostics of aluminum extrusion processes. 

A more systematic approach to data-driven mod-
eling of production processes can be found in (Stanley, 
n.d.; Kapadia et al., 2007), where the types of models 
and process failure management issues are discussed. 
The possibilities of using advanced data-driven process 
modeling have increased significantly in the current era 
of industrial development known as Industry 4.0. In an 
excellent recently published review paper (Silva Peres 
et al., 2020), the current state and the possibilities of us-
ing artificial intelligence in the manufacturing industry 
are comprehensively presented. 

In a cooperating production plant, a project is be-
ing carried out to create an advisory system aimed at 
indicating the optimal parameters of the process and 
tooling to reduce the formation of defects in alumi-
num profiles made by the direct extrusion method. 
This article describes how to build the foundations of 
such a system and presents the main results obtained.

2. Quality issues  
in the extrusion process

Defects of aluminum profiles related to the extrusion pro-
cess can occur at three stages of the process (Fourmann, 
2017): during extrusion, after extrusion (related to metal-
lurgy) and after anodizing. Some defects (such as dents, 
bend & twist, scratches) may also occur as a result of im-
proper handling, storage or transportation of the profiles 
(Prakash et al., 2021). Despite the great importance of the 
direct extrusion process of aluminum alloys, a uniform 
classification of product defects has not yet been devel-
oped and widely accepted (Raimundo & Canuto, 2019).  

In the cooperating plant, the quality management 
procedures distinguish 34 types of defects. However, 
the adopted classification, apart from defects resulting 
from the extrusion process, also includes other defects, 
e.g. failure to meet the size of the ordered product batch, 
and also differentiates the same defect depending on the 
place of its detection: in production or in the store. 

In the group of defects directly related to the 
manufacturing process, the largest share are surface 
defects and shape defects. In the first group, defects 
such as die lines, blisters, tearing, excessive surface 
roughness and pitting are detected. The second group 
includes the following: dimensional variation, lack of 
rectitude, waving, angle variation, flatness variation, 
twisting, dents, broken walls. It is worth noting, how-
ever, that only information about the entire class of 
defects, e.g. surface or dimensional, is stored in the 
plant’s databases, without distinguishing between 
their specific forms. Therefore, it should be expected 
that the advisory system based on such a database will 
indicate several different parameters responsible for 
the defect of a given class.

3. Industrial data characteristics  
and preparation

The original database contained around 66,000 records, 
each of which contained various types of information 
related to one ingot. This information included the val-
ues of over 100 variables related to product, tooling, 
machine and process parameters as well as several 
identifying variables. Some variables are of a numer-
ical type (e.g. dimensions, speeds, temperatures, etc.), 
others are categorical (e.g. product defect code, mold 
type, operator’s name). All these data hereinafter re-
ferred to as “historical”, were acquired and saved over 
a period of 3 months, selected by the cooperating plant 
as representative from the point of view of the product 
assortment, the tooling used, and the level of defective 
products.

Figure 1 shows a diagram illustrating the frequen-
cy of occurrence of particular types of defects. Surface 
and dimensional defects are clearly distinguishable, 
and therefore further research was focused on them. 
Importantly, the defect cases accounted for a  small 
fraction of the total production. For this reason, spe-
cially prepared data sets were adopted for the creation 
of models in which all records with a given defect were 
supplemented with randomly selected records without 
defects so that their number of the last ones would be 
twice the number of the former. Only records with no 
empty cells for all selected variables (see above) were 
included in the database. The two data sets, correspond-
ing to the two defect types, contained approximately 
5,000 records each.

The main steps in creating a database for neural 
modeling and the recommendation system, accord-
ing to data preparation methodology (Grzegorzewski 
& Kochański, 2019), are described below.
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Fig. 1. Occurrences of defect types in the original database

3.1. Cleaning the data

After initial cleanup of the data by removing variables 
(columns) with constant or mostly empty values, the cor-
relation analysis between potential input variables, i.e. 
related to product and process parameters was made. The 
correlations were determined between all pairs of vari-
ables expressed in real numbers and separately between 
all pairs of categorical variables (nominal and/or ordi-
nal). For the numerical variables, Pearson and Kruskal–
Wallis analyses were made. For categorical variables, 
the analysis of correlation was carried out with the use 
of contingency tables, and the Cramér’s V statistic was 
adopted as the measure of the degree of correlation. Each 
pair showing a high value of a correlation coefficient was 
carefully analyzed and an individual decision was made. 
At this stage, one numerical variable was detected having 
identical values with another variable and was eliminated 
from further analysis. However, the results of correlation 
analysis were utilized again after the significance analysis 
of all variables presented further (section 3.2). The result-
ing number of input variables at this stage was 53. 

3.2. Preliminary analysis of  
the significance of  

product and process parameters 

Significance analysis was performed separately for 
continuous numerical and categorical parameters. 
As the type of defect is expressed by categorical val-
ues (surface, dimensions, no defect), the significance 
analysis of numerical parameters was performed us-
ing one-way ANOVA with defect type as input (level) 
and given parameter as output; this approach can be 
called ‘inverse ANOVA’. Due to very different statis-
tical distributions of parameter values, the Kruskal–
Wallis analysis was also used in the ‘inverse’ version. 
The relative significance of the variables was defined 
as F-ANOVA statistics (H statistics in K–W) divid-
ed by the maximum value among those found for all 
variables. Of course, such an ‘inverted’ treatment 
of inputs and outputs only means that we can check 
whether a given parameter had significantly different 
values in the group of cases with a defect compared to 
cases without a defect. If this differentiation is small 
compared to other parameters, then the omission of 
a given parameter in the neural model is justified from 
a practical point of view. 

Figure 2 shows the results for the dimension-
al type defects. The “average” curve does not show 
a clear cut-off of significant parameters from the oth-
ers. Therefore the limit value of 20% was intuitively 
adopted as reasonable, allowing, on the one hand, to 
reduce the number of parameters for further analysis, 
and on the other hand, to retain all potentially sig-
nificant parameters. It should be noted that the rela-
tive significance values obtained from both analyzes 
(ANOVA and K–W) significantly differ for some pa-
rameters. Adoption of this cut-off level ensured that 
none of the significance for the discarded parameters 
was greater than 20%.

Fig. 2. Relative significances of potential numerical input variables (product and process parameters)

Fig. 1



Computer Methods in Materials Science� 2022, vol. 22, no. 4

M. Perzyk, A. Kochański, J. Kozłowski

176

For categorical parameters, the significance anal-
ysis was performed using the contingency table ap-
proach in such a way that one of the variables was the 
occurrence of a given defect, and the other was a given 
input variable. The Cramér’s V statistic was adopted as 
a measure of the significance level of a given input pa-
rameter and, as in the case of numerical variables, its 
normalized values were adopted as a measure of rel-
ative significance. Figure 3 shows the results for the 
dimensional type defects. Variables with a clearly low 
relative significance were omitted in further analysis.

Fig. 3. Relative significances of potential categorical input 
variables (product and process parameters) based on 
Cramér’s V statistics; the variables marked in light grey have 

been rejected 

At this stage, pairs of variables with a significant 
degree of correlation (see section 3.1) were carefully 
analyzed and an individual decision was made to either:

	– replace several variables with a  single ‘substi-
tute’ variable, being combination of their values 
(e.g. adopting average cooling intensity from sev-
eral independent fans, replacing the number of 
runs for a given die by the ratio of this value to the 
total number of hours of its operation);

	– leave the correlated variables.  

As a result of the above analyses, the final num-
bers of input variables for neural modeling were: 

	– for surface defects: 15 variables (8 numerical and 
7 categorical), 

	– for dimensional defects: 17 variables (10 numeri-
cal and 7 categorical). 

4. Neural modeling

The aim of the neural models developed in this proj-
ect was to use them to find significant relationships be-
tween product, tooling, and process parameters and the 
tendency to the occurrence of two selected types of de-
fects. The choice of artificial neural networks was dic-
tated by their widely recognized advantages over other 
types of data-driven models, including the modeling of 
manufacturing processes. 

4.1. ANNs construction,  
training and assessment 

As part of the project, MLP neural networks were adopted 
due to the positive experiences of many authors in similar 
applications (see e.g. Perzyk & Kochański, 2003; Perzyk 
et al., 2005, 2008) and publications cited therein). The 
dependent variable is the occurrence of a product defect, 
so it is essentially a categorical type variable. Due to the 
nature of the network output signals expressed by a con-
tinuous activation, it was decided to treat this variable as 
numerical, assuming the values in the database equal 0 
(no defect) or 1 (defect occurrence). A logistic activation 
function was adopted for the output neurons to ensure that 
results in this particular range were obtained. According to 
many recommendations, the hyperbolic tangent was ad-
opted as the activation function for internal neurons. 

The neural networks were created using the effi-
cient training algorithm from Dell Statistica software, 
assuming the default random division of data records 
(training 70%, 15% testing, 15% validation), one hidden 
layer, and a random selection of the number of hidden layer 
neurons between 8 and 25 (Statistica’s default for this 
data). 500 ANNs were created, from which the 5 best 
networks were selected for further analysis. The selec-
tion was made based on the criterion of the maximum 
product of the network quality calculated for each of these 
subsets (network quality was defined as the linear cor-
relation coefficient between the actual values and those 
obtained from the network). These best networks con-
tained between 16 and 25 hidden neurons. 

The quality levels of the selected networks were 
high, usually 0.94–0.95 for the training subsets for both 
types of defects, above 0.9 for the testing and validation 
subsets in the case of surface defects, and over 0.87 for the 
testing and validation subsets in the case of dimensional 
defects. In Figure 4, a typical distribution of the predicted 
values are shown together with the real values. It can be 
observed that the overwhelming majority (of total about 
5,000 records) of network responses were very close to 0 
or 1, which indicates their tendency to clearly indicate the 
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presence or absence of a defect (with a small number of 
errors, affecting the network quality values given above).

Fig. 4. An example of a typical neural network response 
(one of the 5 selected networks for the surface defect)

In order to assess the reliability of the predictions of 
neural networks, their responses were rounded to the val-
ues 0 and 1, and then the prediction consistency of the se-
lected 5 best networks was evaluated. The agreement of 
predictions for all 5 networks calculated for all real val-
ues was in 89% cases for the surface defect and 79% for 
the dimensional defect. In order to assess the reliability 
of network predictions for completely new combinations 
of input data values, analogous indices of compliance of 
the selected 5 best networks were calculated for 5,000 re-
cords with randomly selected values. The results were as 
follows: the agreement was in 27% for the surface defect 
and 33% for the dimensional defect. These large predic-
tion inconsistencies for different networks call into ques-
tion the usefulness of neural networks for recommending 
process settings and tooling design for new products. 

Further analysis revealed the cause of this neural 
network behavior. In the data used to create the neural 
networks, quite numerous identical records were pres-
ent. Hence, high network quality indices were also ob-
tained for validating data, which contained a significant 
fraction of records similar to those in the training data. 
Some test neural networks were constructed for the data 
prepared in such a way that the validation records did 
not appear in the data used for training. The summary 
of these tests can be presented in the form of correla-
tion coefficients between the predictions obtained from 
all the 5 networks which could be used as a measure of 
agreement between networks which indicates their reli-
ability. For the surface defect, the correlation coefficient 
was 0.86 for all real records, 0.28 for completely new 
random combination of input values and 0.52 for vali-
dating records (being also ‘new’ for the neural network). 
This means that the reliability of the predictions of the 

neural network for new data is significantly better if the 
input data were also obtained within certain conditions, 
i.e. excluding some combinations of values appearing in 
the randomly obtained data that the network was unable 
to learn. This conclusion was crucial in using neural net-
works in the developed recommendation system.

4.2. Knowledge extraction  
from ANNs

The first purpose of using a neural network to recommend 
process parameters in tooling construction is to identify 
the main causes of product defects in order to minimize 
the likelihood of their occurrence. There are various 
methods of determining the relative significances of in-
put variables of the neural model from the point of view 
of the degree of their influence on the output. The most 
popular and relatively simple method takes the measure 
of the significance of the variable, the increase of the neu-
ral network error as a  result of blocking a  given input 
at a constant level, i.e. replacing the actual values in the 
training set with certain constant values, e.g. averages. 
However, in the case of discrete input variables, where 
one variable is replaced by several variables (the num-
ber of which corresponds to the number of possible val-
ues of that variable), the applicability of this approach 
is questionable. The authors of the article conducted 
several tests with the use of specially prepared artificial 
and real data sets using the Dell Statistica software that 
utilizes the input significance calculation based on the 
above principle. It turned out that it significantly overes-
timates the significance of discrete variables, typically by 
1.5–2.5 times. This prompted the authors to abandon this 
approach as a tool used to determine the most defect-in-
fluencing product, tooling, and process parameters.

Taking into account the conclusions from the re-
liability testing of neural networks (section 4.1), the 
following methodology for obtaining knowledge about 
the influence of various types of parameters on the ten-
dency to defects was adopted. 

The magnitude and direction of the influence of one 
input variable on the output generally depends on the cur-
rent values of the other variables. The values of the output, 
found for a specific level of the considered input variable 
for different values of the remaining variables, can be 
considered as some random set of the output values, for 
which statistical analysis, including ANOVA, can be used. 
By applying several levels of the input variable under con-
sideration, important information about its possible influ-
ence on the output (defect tendency) can be obtained. For 
categorical inputs, all values appearing in the data were  
used, while for numerical inputs, continuous values were 
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converted into one of 10 equally spaced intervals (levels). 
The levels of a continuous variable should be numerous 
enough to reflect its effect on the dependent variable. 
When the character of the dependence between variables 
is unknown, especially when non-monotonic influence of 
a given input should be taken into account, 10 levels is 
a reasonable value. For monotonic dependencies usually 
smaller numbers are satisfactory (e.g. Perzyk et al. 2014). 

In order to obtain more reliable neural model re-
sponses (see section 4.1) it was decided to adopt the fol-
lowing combinations of the remaining input variables:

	– appearing in the historical data (used for the net-
work training);

	– randomly generated, but only those for which all 
top 5 networks gave consistent responses;

	– for comparison, calculations were also made for 
all random values (5000), i.e. including those for 
which the predictions of the network were incon-
sistent.

In Figures 5–13 examples of the results obtained 
from the best five neural models are presented in the 
form of graphs showing the average network predic-
tions vs input levels. It can be noticed that all three 
variants of the values of the remaining variables give 
qualitatively similar predictions. However, signifi-
cantly larger differences between the five networks are 
observed when all random records were used for the 
remaining variables (compared with those obtained for 
the real, historical values).

Fig. 5. Example of surface defect predictions vs level of a numerical variable characterizing the product, obtained for the 
remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only those 

for which all 5 networks gave consistent responses; c) all random values    

a)

b)

c)
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Fig. 6. Example of surface defect predictions vs level of a numerical variable characterizing operational conditions, obtained 
for the remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only 

those for which all 5 networks gave consistent responses; c) all random values

�

Fig. 7. Example of dimensional defect predictions vs level of a numerical variable characterizing machine settings, obtained 
for the remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only 

those for which all 5 networks gave consistent responses; c) all random values

a) b)

c)

a) b)

c)
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Fig. 8. Example of dimensional defect predictions vs level of a numerical variable characterizing die operation, obtained for the 
remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only those 
for which all 5 networks gave consistent responses; c) all random values. This is an example of one of the most influencing 

numerical parameters, with apparent nonlinearity

�

Fig. 9. Example of dimensional defect predictions vs level of a numerical variable characterizing die operation, obtained for 
the remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only 
those for which all 5 networks gave consistent responses; c) all random values. This is an example of one of a non-influencing 

numerical parameters

a) b)

c)

a) b)

c)



2022, vol. 22, no. 4� Computer Methods in Materials Science

Fundamentals of a recommendation system for the aluminum extrusion process... 

181

�

Fig. 10. Example of surface defect predictions vs level of a categorical variable characterizing the product, obtained for the 
remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only those 
for which all 5 networks gave consistent responses; c) all random values. This is an example of one of the most influencing 

categorical parameters

�

Fig. 11. Example of dimensional defect predictions vs level of a categorical variable characterizing the product, obtained for 
the remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only 
those for which all 5 networks gave consistent responses; c) all random values. This is an example of one of the non-influencing 

categorical parameters whereas this same parameter (alloy grade) was much influencing the surface defects (see Fig. 10)

a) b)

c)

a) b)

c)
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Fig. 12. Example of surface defect predictions vs level of a  categorical variable characterizing the die, obtained for the 
remaining variables: a) appearing in the historical data (used for the network training); b) randomly generated, but only those 

for which all 5 networks gave consistent responses; c) all random values

�

Fig. 13. Example of dimensional defect predictions vs level of a categorical variable characterizing the human factors, 
obtained for the remaining variables: a) appearing in the historical data (used for the network training); b) randomly 

generated, but only those for which all 5 networks gave consistent responses; c) all random values

a) b)

c)

a) b)

c)
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Figures 14 and 15 show the comparisons of two 
quantities characterizing the magnitude of the impact of 
individual variables on the predicted defects. It can be 
seen that some input variables clearly stand out, and this 

is confirmed for all 3 variants of interrogating the neural 
network. Additionally, it can be noticed that the consistent 
predictions for the remaining random-valued variables give 
impact values greater than for the real, historical values. 

Fig. 14. Comparison of the impact of input values on the predicted average occurrence of the surface defects: a) F-ANOVA 
statistics calculated for the network predictions; b) the maximum difference between average predictions of the five networks 

due to extreme change of the given parameter

a)

b)
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Fig. 15. Comparison of the impact of input values on the predicted average occurrence of the dimensional defects: a) F-ANOVA 
statistics calculated for the network predictions; b) the maximum difference between average predictions of the five 

networks

5. Idea of  
the recommendation  

system
The results of modeling with neural networks described 
in the previous chapter allowed the determination of 

the most important factors influencing the formation of 
defects as well as the strength and direction of this in-
fluence. This information is summarized in Tables 1–4. 
They can serve as recommendations for the design and 
operation of dies and the setting of some process pa-
rameters and its organization. 

a)

b)
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Table 1. Semi-quantitative strength and direction of the influence of numerical (continuous) variables on the tendency to 
produce surface defects

Names of numerical (continuous) 
variables

Profile circumscribing circle 
diameter / Profile weight per 

unit length

Profile height / 
Profile weight 
per unit length

Profile face 
size

Set number of 
ingots in series

Strength and direction of influence    

Best 0.013 0.172 0 3

Worst 0.267 0.003 612 382

Table 2. Semi-quantitative strength and direction of the influence of categorical (discrete) variables on the tendency to produce 
surface defects

Categorical 
(discrete) variables

Alloy 
grade

Profile surface quality 
requirement

Die 
manufacturer 

code

Die 
number of 

holes

Die 
operator 

code
Profile general 
difficulty level

Strength of influence *** * ** *** ** *

Best 6063 raw 6 1 6 X – impossible

  6005A to be anodized 2 6 8 C – difficult

  6060 to be lacquered 7 2 3 B – normal

  1070A important surface quality 4 3 4 A – easy

  6463 no treatment 1 10 1 D – very difficult

  6082   5 8 5  

      3 4 7  

Worst       5 2  

Table 3. Semi-quantitative strength and direction of influence of numerical (continuous) variables on the tendency to produce 
dimensional defects

Numerical 
(continuous) 

variables

Profile circumscribing 
circle diameter / Profile 
weight per unit length

Profile height 
/ Profile 

weight per 
unit length

Profile 
face size 

[mm]

Die number of 
runs / Die total 
extruded length

Set number 
of ingots in 

series

Average 
fan air 

speed [m/s]

Strength and 
direction of influence      

Best 0.013 0.172 0 0.00012 3 59.8

Worst 0.267 0.003 612 0.01 382 0

Table 4. Semi-quantitative strength and direction of influence of categorical (discrete) variables on the tendency to produce 
dimensional defects

Categorical (discrete) variables Die manufacturercode Die operator code

Strength of influence ** **

Best 6 6

  2 8

  7 3

  4 4

  1 1

  5 5

  3 7

Worst   2
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Each of the parameters appearing in Tables 1–4 
can be assigned to one of the following three groups:

	– related to the product, are not subject to change;
	– related to tooling (die);
	– related to the extrusion process.

The advisory system should support two basic 
types of tasks carried out in the plant. The first is the 
launch of a  new product, where decisions are made 
about the design and supplier of the die. The second 
task is the selection of parameters for a new or contin-
ued (already running) process. 

The idea of the advisory system is to utilize the 
historical cases in the database. In both tasks, the lim-
ited number of parameters having a significant impact 
on the formation of defects makes it realistic to find 
cases similar to the new one in the database. In the 
first task (starting a  new product) the similarity is 
based only on the group of the product-related param-
eters, whereas the similarity should take into account 
both product-related and tooling-related parameters in 
the second task. 

The system should search for good cases (with-
out defects), for which the parameters used for 
matching were at the same or more ‘dangerous’ level 
than those of the new or modified process. This can 
be done by using the information provided in the low-
er cells of the tables. If finding such historical cases 
turns out to be impossible, then the selection of the 
safest parameters should be followed, as presented  
in Tables 1–4. 

6. Summary, conclusions  
and further work

The development of the basis for the recommenda-
tion system for the aluminum extrusion process was 
carried out in several basic stages. They included the 
initial selection of significant variables using statistical 
methods, then the construction and evaluation of neu-
ral models, and finally their use to create tables of the 
impact of product, tooling and process parameters on 
selected profile defects. One of the achievements of 
this work is finding ways to use neural models to avoid 
their inherent imperfections and limitations. The target 
recommendation system should be developed by tak-
ing into account the comments on the reliability of the 
predictions of neural models presented in section 4.1.

The obtained results should allow the construction 
of a practical recommendation system for the extrusion 
process, using the existing records stored in the data-
base and the results of neural modeling summarized in 
Tables 1–4, as described in section 5. This approach 
seems to provide the most reliable and secure system. It 
should be expected that the consistent application of the 
system’s recommendations will allow for a significant 
overall reduction in the number of defective products. 
Its implementation will be the subject of further work. 

Also envisaged is the testing of the use of neural 
models to predict the effects of changes in some pa-
rameters, including simultaneous changes to several 
of them. However, their use should be limited to cases 
where all neural networks give consistent results.
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