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Abstract
In this paper, we consider an approach to changing the temperature of liquids and gases in a pipeline by local heating and cool-
ing. The concept is based on the introduction of changes in the temperature series of the pipeline sections due to the external 
modification these sections’ temperature. This situation could be used as a heat sink or to increase temperature. A developed 
heat transfer model in a pipeline also accounts for convection due to liquid/gas transport. An analytical approach for the anal-
ysis of liquid/gas transport that takes into account the transport of heat due to convection was also introduced. The approach 
allows the spatial and temporal variation of parameters of transport to be taken into account as well as considerations of the 
nonlinearity of the investigated processes.
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1. Introduction

In several technical applications, it is necessary to 
make a heat sink and, if necessary, stabilize the tem-
perature of the liquid or gaseous heat carrier. In the 
framework method, for the transport of heat carri-
er, a cylindrical transportation system is considered 
(a frequent example of such a system is a pipeline) 
with a circular section (see Fig. 1). This pipeline has 
a metal section with a known dimension and a porous 
metal inside. This section has a stable temperature 
(for example, the section is located in a stream of wa-
ter at the required temperature) to correct gas or liquid 
temperature to the required value. The main aim of 
the paper is to estimate spatio-temporal distribution 
of temperature in the considered pipeline under the 
influence of the introduced metal sections with a sta-

ble temperature. The accompanying aim of the pres-
ent paper is the creation of a model of the considered 
mass and heat transport, as well as an introduction of 
an analytical approach for the prognosis of mass and 
heat transport.

r = R

z = 0 z = Lz = a z = b

z

Fig. 1. Structure of the considered pipe is L 
 (axial coordinate z ∈ [0, L]) with radius R. This tube has 

a section z ∈ [a, b]
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2. Method of solution

To solve the defined aims, the spatio-temporal distribu-
tion of the considered temperature was calculated. The 
required distribution of temperature was calculated by 
the solution of the second Fourier law (Carslaw & Jaeger, 
1964; Fedorenko et al., 2020; Kalaev, 2020; Liu et al., 
2020):
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Here r, ϕ, z and t are the current cylindrical coor-
dinates and time (r ∈ [0, R], ϕ ∈ [0, 2π], z ∈ [0, L]);  
T(r, ϕ, z, t) is the spatio-temporal distribution of tem-
perature; c  is  the specific heat capacity of the consid-
ered system; C is the concentration of the transported 
substance in the pipeline; λ is the coefficient of thermal 
conductivity; p(r, z, t) is the density of power, which 
is stand out released in the considered system; v→ is the 
flow velocity of heat carrier, which is described by the 
Navier–Stokes equation:
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where P is the pressure in the pipeline; ν is the kine-
matics viscosity. Boundary and initial conditions for 
the considered equations can be expressed as:
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T(r, 0, z, t) = T(r, 2π, z, t); T(0, ϕ, z, t) ≠ ∞
T(r, ϕ, z, 0) = T0; T(r, ϕ, 0, t) = T(r, ϕ, L, t) = Tb1 (3)

T(r, ϕ, z ∈ [a, b], t) =Tb2 
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vϕ(r, 0, z, t) = vϕ(r, 2π, z, t), vr(0, ϕ, z, t) ≠ ∞ 
vz(r, ϕ, 0, t) = vz(r, ϕ, L, t) = V0 

vr(r, ϕ, z, t) = vϕ(r, ϕ, z, t) = vz(r, ϕ, z, t) =V0

Here σ = 5,67⋅10−8 W⋅m−2⋅K−4; boundary conditions 
on the metal section could be transferred to a separate 
term in the form of power density to the equation (1)  
p(r, z, t)/c = Tb2sign ([z − b + a]/L)δ((r − R)/L)/ϑ, where 
ϑ is the time scale for achievement of stationary tem-
perature distribution. This time scale was calculated by 
using the previously introduced approach (Pankratov  
& Bulaeva, 2013) and can be expressed as ϑ = λ/cπ R2L. 
In a cylindrical coordinate system, the equations for the 
velocity projections take the form:
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Due to the symmetry of the investigated system, 
to describe the velocity, one can only consider the axial 
velocity component, i.e. vz. To solve equation (4c), the 
method of averaging functional corrections was used 
(Sokolov, 1955; Pankratov, 2012). It should be noted 
that the method provides the opportunity to obtain solu-
tions to the above equations analytically in the more 
common case in comparison with recent approaches: 
Fourier approach, integral transformation approach 
(Carslaw & Jaeger, 1964; Fedorenko et al., 2020). Nu-
merical approaches for the solution of equations have 
less visibility in comparison with analytical ones (Ka-
laev, 2020; Liu et al., 2020). The method of averaging 
functional corrections provides the opportunity to con-
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sider the spatial and temporal variation of the parame-
ters of transport in more common cases than by using 
Fourier and integral transformation approaches. At the 
same time, it is possible to take into account the non-
linearity of the considered processes. The framework 
method of averaging functional corrections to deter-
mine the first-order approximation of the projection of 
the velocity of  the heat carrier flow, we  replace  it on 
not yet known average value (i.e. vz → α1z) in the right-
hand side of equation (4c). After this substitution, the 
equations for the first-order approximations of the re-
quired component were obtained in the following form:
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The second-order approximation of the considered 
projection could be obtained by replacing the function 
on the right-hand side of equation (4c) with the follow-
ing sum vz → 2z + v1z. The equation for this projection is:
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The integration of this equation leads to the fol-
lowing result:
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The average value α2z was determined by the fol-
lowing standard relation:
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Here Θ is the continuance of observation on heat 
transport. Substitution of the first- and the second-order 
approximations of the considered velocity projection 
into relation (8) leads to the calculation of the required 
average value α2z and obtaining the following relation:
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In this section, the projection of the heat carrier 
flow velocity vz was calculated using the second-order 
approximation by the method of averaging functional 
corrections. Usually, the second-order approximation 
is a good enough approximation to make a qualitative 
analysis of the obtained solution and to obtain some 
quantitative estimates. Next, an equation (1) in a cylin-
drical coordinate system can be formulated:
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To determine the spatio-temporal distribution of 
temperature, again the same method of averaging func-
tional corrections was used. To calculate the first-order 
approximation of the considered function, it is replaced 
by a not yet known average value α1T on the right side 
of equation (10). Using the above algorithm gives 
a possibility to obtain a relation for the first-order ap-
proximation of temperature in the following form:
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Now it is possible to determine the not yet known av-
erage value α1T by using the following standard relation:
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Substitution of the first-order approximation of tem-
perature into relation (12) leads to the following result:
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We determine the second-order approximation 
framework by a standard procedure of the method of 
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averaging of function corrections (Sokolov, 1955; Pank-
ratov, 2012), i.e. by replacement of the required function 
in the right side of equation (12) by the following sum: 
T → α2T  + T1. In this case, the second-order approxima-
tion of the required function could be written as:
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An average value of the second-order approxima-
tion of temperature α2T can be calculated by the follow-
ing standard relation:
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Substitution  of  the  first-  and  the  second-order  ap-
proximation of temperature into relation (14) gives a rela-
tion for the required average value in the following form:
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Analysis of spatio-temporal distribution of tem-
perature was done analytically by using the second-or-
der approximation framework from the method of av-
eraging functional corrections. The approximation is 
usually good enough to obtain a qualitative analysis 
and obtain some quantitative results. The results of an-
alytical calculations were verified by comparing them 
with the results of numerical simulation.

3. Discussion

In this section, the temperature field in the system heat 
carrier - transportation system was analyzed. Figures 2–5 
show the distributions of temperature in the considered 
system. Figures 2 and 3 show that changing the external 
temperature of the considered pipeline leads to chang-

ing the internal temperature framework of the pipeline 
with a changing radius, which shows the adequacy of 
the model. Figures 4 and 5 show that changing of the 
temperature of an external porous section in considered 
pipeline leads to changing of internal temperature frame-
work in the pipeline with changing of axial coordinate.

Fig. 2. The dependence of the temperature of the heat carrier 
on the radius at various values of the temperature of the wall of 
the transport system. The increasing number of the curves 
corresponds to the increase of the wall temperature, provided 

that it is less than the heat carrier temperature

Fig. 3. The dependence of the temperature of the heat carrier 
on the radius at various values of the temperature of the wall of 
the transport system. The increasing number of the curves 
corresponds to the increase of the wall temperature, provided 

that it is larger than the heat carrier temperature

Fig. 4. The dependence of the temperature of the heat carrier 
on the axial at various values of the temperature of the 
section of the transport system. The increasing number of 
curves corresponds to the increase  of the temperature of an 
external section, provided that it is less than the heat carrier 

temperature
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Fig. 5. The dependence of the temperature of the heat carrier 
on the axial coordinate at various values of the temperature of 
the section of the transport system. The increasing number of 
curves corresponds to the increase of the considered section, 

provided that it is larger than the heat carrier temperature

4. Conclusion

In this paper, an approach to changing the tempera-
ture of liquids and gases in a pipeline by using metal 
porous sections with the modification of temperature 
by external actions was considered. The model for the 
prediction of mass and heat transport in the investi-
gated pipeline was also introduced. Finally, an analyt-
ical approach of analysis mass and heat transport was 
considered. The analysis of mass and heat transport 
shows that the developed model is qualitatively ad-
equate.
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