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Abstract

Development of the cellular automata (CA) sphere packing algorithm dedicated toéhnatige of twe and three
dimensional digital, synthetic microstructure models with heterogenous grain size distribution is presented within the pa-
per. The synthetic microstructure model is generated in four major steps: generation of 2D/3D cellukmaidorputa-
tional domain, generation of circles/spheres with a required size distributionpeldsed filling of the computational
domain with generated circles/spheres, growth of the circles/spheres according to the unconstrained CA growth algorithm.
As a result, synthetic microstructure models with prescribed, e.goubimodal, grain size distribution are obtained. To
reduce the computational complexity and decrease execution time, the rotation of the circles/spheres during the packing
stage is baskton the vector accounting for the distance from computational domain borders and other spheres. The CA
grain growth algorithm is also implemented using threads mechanism, allowing parallel execution of computations to in-
crease its efficiency. The develapalgorithm, along with the implementation details as well as a set of exemplary results,
are presented within the paper
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1. INTRODUCTION pabilities not only to recreate the morphology of

_ _ _ microstructure but also to assign various material
Today, highly complex metallic materials that properties to subsequent miescale features

were previously reserved only for space exploration (Madej, D17). However, to properly replicate mi-
applications are becoming commonly applied in crostructure morphology in a digital sense, the so-
airplanes, cars, motorcyclesnd even in more ordi-  phijsticated numerical algorithm has to be developed.
nary products such as electronics. Until recently, A DMR model can be created by the two con-
work on the development of those materials was ceptually different approaches. In the first concept,
carried out primarily through costly and time  gigital microstruatire morphologies are recreated
consuming experimental and laboratory research. pased on the experimental data acquired by, e.g.,
However, today's access to computing poweetes  scanning electron microscopy electron backscattered
new and often still unrecognized opportunities for {iffraction technique SEM/EBSD (Raabe & Becker,
materials science. Designing modern numerical 2000: Sitko et al., 2020), using complex algorithms
models that accurately describe materials with re- o, image and data anais. Most of the times, the
spect to their actual microstructure with grains, metallography investigation with light microscopy
phases, defects, or even atoms is a key stage lin suc (LM) or electron microscopy (EM) is used to pro-
a computerided material design. These digital ma- yide experimental data on microstructure state in the
terial representation based (DMR) models have ca- op space. For the 3D case, the serial sectioning
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(Hoffpauir et al., 2007; Hdin et al., 2020) or tomo-  microstructure morphologies with required size dis-
graphic methods, e.g., computed tomography (CT) tribution is equally important and, therefore, is ad-
or atom probe tomography (APT) are used depend- dressed within the ctent work.

ing on the type of material and size of the investigat- The gravitational sphere packing method was se-

ed volume (Banhart, 2 0 0 8lectedMfdt the&s invhstgatipn as antefficeht algoritfdn0 2 0 )

These approaches provide theaet representation  that has the capability of generating complex micro-
of the investigated region; however, due to the re- structure morphologies using densely packed parti-
quired significant amount of experimental data, they cles. A series of modifications wedeveloped and
are still considered as tirmnsuming and expen- introduced to the classical algorithm in order to pro-
sive. Therefore, the second concept is based on thevide the possibility for computationally efficient
generation of the synthetic modeakcreating micro- generation of microstructure morphologies with
structure state in a statistical manner with numerical controlled noFhomogeneous grain size distribution.
algorithms, e.g., Voronoi tessellation, Monte Carlo Finally, to provide a realistic repragation of grain
Pots Model, etc. A detailed review of the topic can boundary geometry, the sphere packing algorithm
be found in (Madej, 2017). was combined with the cellular automata grain
A promising approach in the latter concept is the growth model
application of the circle/sphere/ellipse/ellipsoid
packing algorithms (Jodrey & Tory, 1979; Visscher 2. MATHEMATICAL MODEL O F THE
& Bolsterli, 1972; Orick et al., 2017; Romanova et SPHERE PACKING ALGOR ITHM

al., 2020), generally referred here as sphere packing L _ _

ones. This class of methods can be primarily divide The synthetic digital mlt_:rO_Strl_Jcture is generated

into dynamic and constructive solutions. In the dy- In the_ dev_eloped approawtnthm five majo.r steps.

namic approaches, the spheres change their positionThe first is responsmle for_ the generation of the
2D/3D computational domain in the form of cube,

or their size during the packing process, which is ) o
controlled by a shrinking algorithm (Tory & Jodrey, ~Sduare, rectangier cuboid, as seen in figure 1

1986: Torquato & Jiao, 2010; He et al., 2018)neo In this case, from the definition of the computa-
pression forces algorithm (Khirevich, et al., 2013; tonal domain, its origin is in #(0,00) point, which
Baranau & Tallarek, 2014) or gravitational algo- is located in the left bottom corner, and spreads to

rithm (Shi & Zhang, 2008; Hitti & Bernacki, 2013; he right top corner located im,(no) point. Then
Sahu, 2009; llina & Bernacki, 2016). In the case of during the second step of the algorithm, a generation

constructive approaches, sphere parameters like size of circles/spheres with required size distribution is
or position are preserved during the packing process, '€alized. These cikes/spheres are defined by their

so they are less costly but have difficulties in achiev- 'd Number, centroid point, and radius r, as seen in
ing highdensity packing (Evans, 1993; Cui & figure 2 for the 3D and 3D space, respectively. Spe-

06Sullivan 2003 : Kazak OQ)flc rélqu ar%qeneratedzaﬁcerglr}g to the defined S|ze
The primary goal o,f these metho,ds is to obtain a distribution. Three’ different options have been in- O

densely paced computational domain (Clarke & vestigated inthis case: the unimodal, bimodal andE
Wiley, 1987). However, the problem of precise con- trimodal (figure 3).
trol of spheres diameter to obtain heterogeneous

a) b) <) d)

COMPUTERMETHODSIN MATERIALSSCI

Fig. 1. Investigated geometries of computatiodab ma i n : a) square with size nlm,

nilm amdod)d ewi th size nlmlo

c
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In this case, in each iteration the y position of the

centre of the ith moving shape is translated vertically
by dy = 0.05; until:
N &)

To verify that the new position does not collide
with neighbouring shapes, the following expression
is used:

a) b)

(r +ri)2 Ax, Xi)2 (> yi)z )
0. 2. Definition of &) circle, b) sphere with defined radius where: X, ¥ T coordinates of the 2D moving
shapeyi i radius of the 2D shape;, X, V;, are
corresponding parameters for all neighiog,
stationary shapes, ji [1,N].

- If the collision is identified, then the investigated
i frimoce! shape is translated to the sides, and several cases are
b considered as schematically shown in figure 5 and
0 2 a 6 s o1 figure 6.
e The rotation after collision results in a change in

thex andy; values:
X =% °dx (©))

Fi

Propability density
(=
'S

Fig. 3. Grain size distributioriunctions: unimodal, bimodal and
trimodal.

Then, during the third step of the developed al- > 3
gorithm subsequent circles/spheres are initially lo- ¥ :\j(rj *“i) (Xj ’?') Y Q)
cated at the top of the computational domain as seenwhere:dx= 0,01.
in figure 4, and are then subjected to the algorithm
responsite for their downward movement until
impingement that prevails further changes in the
position. The algorithm is based on a series of step:
dealing with defined different events that can occur

during the movement of an investigated shape
SE @
[

foreach j-th obstacle

@ TRUE—> move left

FALSE —» move right

if (move left
& move right)

TRUE
¥

moving = false END

Fig. 5. Flow chart for the shape movement algorithm in the 2D
space

n

Fig. 4. Computéional domain with an initial position of the
generated shape (circle case study)

COMPUTERMETHODSIN MATERIALSSCIENCE
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a) b) c) d)

Fig. 6. Flow chart for the shape movement algorithm in the 2D space

When the circle becomes stationary, its parame- Table 1.Parameters for the three case studies of the developed 2D
ters are saved into the list sfationary shapes. This ~ Ve'sion of the algorithm

algorithm is performed until the computational do- Distribu- | Rangeof | | . Sgggng

main is unable to accommodate more shapes. tion radius, px P : % v,
Capabilities of the developed model were tested [ Unimodal [1; 15] ) 3 7701

o_n the pa3|s of three cz?\se studies for different size | 5. Jqal 1[%);_ ?]5 132 é 7816

distributions, as shown in table 1xdmples of ob- [[1_’3]] > T

tained results for the computational domain with the | fyimogal [5: 9] 7 3 7778

5501300 px are presented in fli[pusig 13, fijlgur el 8

figure 9

Unimodal distribution

Frequency

0,05 I I
0

1 3 5 7 9 11 13 15 (px)
I Sizes of circles == Unimodal Distribution

b)

Fig. 7. Results for the unimodadistribution: a) packed computational domain, b) comparison of the theoretical and obtained size
distributions

Bimodal distribution

Frequency
o ©
N w

o
i

0 — — e
1 3 5 7 9 11 13 15 (px)
I Sizes of circles  ===Bimodal Distribution
b)
Fig. 8. Results for the bimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size
distributions
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Trimodal distribution

0,25

o
N

0,15

Frequency
o
=
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0
1 3 5 7 9 11 13 15 (px)
I Sizes of circles == Unimodal Distribution

b)

Fig. 9. Results for the trimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size
distributions

As presented, the developed algorithm provides Capabilities of the developed model were again
results with required size digiution for simple tested on the basis of three case studies from table 2.
unimodal as well as multimodal cases. Results are aThe ske of the computational domain was assumed
good representation of the theoretical size distribu-t o be 55013001150 px. E x a my
tion with just a slight discrepancy. The packing den- are presented in figure 10, figure 11 and figure 12.

sity in these 2D models is at the level above 77%.

The same algorithm is alsal@pted to the 3D Table 2 Parameters for the three case studies of the developed 3D
. version of the algorithm
space with the shapes represented by spheres. How-

. . . ) L Packing
eve_r, in thIS case,.a5|de from x and y, also the z c_o Distribu- Rarge of m px | & px | density,
ordinate is taken into account. Therefore, the colli- tion radius, px %
sion event is identified by the following equation: Unimodal [1; 15] 7 3 45.73
. [1; 6] 3 3
Bimodal 459
(on) A ) (8 v (mr2) O R AR
The sideways movement to relocate the centre of | "medal [5; 9] ! 3 4549
o [12; 15] 13 1
the sphere after the collision is controlled by:
;0"-1 (% - X) In the 3D case studies, the packing density is re-
dx = 10 (6) duced to approx. 45%. Unfortunatethe lower the
n packing density, the higher the deviation from the
W Vi- ¥) required size distribution after the subsequent cellu-
e Iao Yi- Y ) lar automata grain growth stage is expected
n
a(z- 32
dz=1=0 (8)
n
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Bimodal distribution

Frequency
o
N

O - — e
1 3 5 7 9 11 13 15 (px)
I Sizes of circles === Bimodal Distribution
b)
Fig. 10. Results for the unimodal distribution: a) packesmputational domain, b) comparison of the theoretical and obtained size
distributions
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Bimodal distribution of spheres sizes
0,4

0,3
0,2
0,1

0

Frequency

1 3 5 7 9 11 13 15 (px)
I Sizes of spheres == Bimodal Distribution

b)

Fig. 11. Results for the bimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size
distributions

Trimodal distribution of spheres sizes

o
N

Frgquency
=

0 I

1 3 5 7 9 11 13 15 (px)
I Sizes of spheres =Trimodal Distribution
b)
Fig. 12. Results fothe trimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size
distributions

the id equals 0, then the cell is empty and can be
3. CELLULAR AUTOMATA GR AIN updated according to some fixed transition rules. If
GROWTH ALGORITHM noti the element is assigned tetngrain, where n
is grain number. The neighbourhood is a set of cells
The creator of Cellular Automata (CA) is J. von related to a specified element bktgrid, which are
Neumann, whan the early 1960s used them to de- used to determine its id in the next step of the algo-
scribe processes relevant to the phenomenon of rep-rithm. Moreover, boundary conditions at the compu-
lication of living organisms (Von Neumann, 1966). tational domain have to be specified, e.g., periodic
Later, this method became very popular in various or absorbent, respectively.

fields of science and technology, including material — .
9y g To initiate the cellular automata grain growth al-

science (Raabe &&ker, 2000). : . .
gorithm, the generated computational domain has to
The cellular domain is described by means of a be discretized by the regular space of CA cells. In
regular grid of cells. Each CA cell has an id number the paper, the geometry of each CA cell is a square
and a specified type of neighbourhood. The id num- in 2D and a cube in 3D space. The concept of the
ber is used to represent CA cells belonging to the developed mapping algorithm of the closed packed
same grain in the polycrystalline micrastture. If shapesrito the CA space is shown in figure. 13

(x.v)
*

(e, y2) i
a) b) e)

Fig. 13. Example of the mapping process for 2D space: a) geometrical description of the generated shape, b) identification of the
overlapping area wit CA spaces, ¢) conversion to the CA space
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The same approach can be used to 2D andrately by different threads to decrease thejpota-
3D computational domains, with appropriate tional time of the developed algorithm. The applied

conversion equations met hod executes one of t

) ) iteration may be run in parallel. The number of itera-
(%- %) {yj yrs) r< ©) tions that can run in parallel is set up according to
(- xg)z {y,- yré)z (2 Z)éz ? (10) the number of processors.

] ) _ ) To check the inflence of circles/spheres pack-
Finally, the CA grain growth odel described in - jg density on the final grain size distribution the
(Madej, 201)was implemented in this work to ob-  inpyut data from figure 7 figure 12 after conversion
tain the final digital microstructure model. were used during the CA growth stage. Examples of

The computational domain is additionally split ptained results are shown in figatet - 19.
into N equally sized parts, which are processed sepa-

Unimodal distribution of spheres sizes

0,15
>
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3 o1
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b)

Fig. 14. Results for the unimodal distribution: a) 2D digital microstructure, b) comparison of the theoretical and obtained size
distributions

Bimodal distribution of spheres sizes
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Fig. 15. Results for the bimodal distribution: a) 2D digital microstructuly, comparison of the theoretical and obtained size
distributions
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Trimodal distribution of spheres sizes
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Fig. 16. Results for the trimodal distribution: a) 2D digital microstructure, b) comparison of the theoretical and obtained sgge

distributions
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Fig. 17. Results for the unimodal distrbion: a) 3D digital microstructure, b) comparison of the theoretical and obtained size
distributions

Fig. 18. Results for the bimodal distribution: a) 3D digital microstructure, b) comparison of the theoretical and obtained size
distributions

Fig. 19. Results for the trimodal distribution: a) 3D digital microstructure, b) comparison of the theoretical and obtained size
distributions

As seen in each case study, the final grain sizes of the spherical shape of objects by the elliptical
are larger than cloggacked shapes &g, because  ones. This will be the sjgxt of future work.
the initial domain is not filled in 100%. For tests 1, 2 As the model contains stochastic elements, to
and 3 (table 1), the packing density is at the level evaluate its robustness, the additional set of calcula-
above 77%. The empty spaces occupy less than 23%tions was designed and executed. For this, each of
of the computational domain; therefore, quite similar the presented earlier case studies was recalculated
distributions after the CA gmigrowth algorithm ten times and compared with thepropriate distri-
were obtained. Unfortunately for 3D domains, only bution to confirm that the model provides repeatable
45% of the computational domain is filled with 3D results. Obtained data are summarized in the last
shapes, and after the grain growth, the discrepanciescolumn of table 3.
in the final grain size distributions are significant. Presented results confirm that generated objects

One of the approaches toascome the issue  have dimensions within the range provided by the
with low packing density is to use optimization algo- distribution. Thenumber of objects for a given size
rithms during the sphere packing stage as describedwas slightly different in each simulation, but it does
in (Madej, et al., 2014). The other is the substitution not affect the overall model response
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