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Abstract 

Development of the cellular automata (CA) sphere packing algorithm dedicated to the generation of two- and three-

dimensional digital, synthetic microstructure models with heterogenous grain size distribution is presented within the pa-

per. The synthetic microstructure model is generated in four major steps: generation of 2D/3D cellular automata computa-

tional domain, generation of circles/spheres with a required size distribution, close-packed filling of the computational 

domain with generated circles/spheres, growth of the circles/spheres according to the unconstrained CA growth algorithm. 

As a result, synthetic microstructure models with prescribed, e.g. uni- or bimodal, grain size distribution are obtained. To 

reduce the computational complexity and decrease execution time, the rotation of the circles/spheres during the packing 

stage is based on the vector accounting for the distance from computational domain borders and other spheres. The CA 

grain growth algorithm is also implemented using threads mechanism, allowing parallel execution of computations to in-

crease its efficiency. The developed algorithm, along with the implementation details as well as a set of exemplary results, 

are presented within the paper. 
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1. INTRODUCTION  

Today, highly complex metallic materials that 

were previously reserved only for space exploration 

applications are becoming commonly applied in 

airplanes, cars, motorcycles, and even in more ordi-

nary products such as electronics. Until recently, 

work on the development of those materials was 

carried out primarily through costly and time-

consuming experimental and laboratory research. 

However, today's access to computing power creates 

new and often still unrecognized opportunities for 

materials science. Designing modern numerical 

models that accurately describe materials with re-

spect to their actual microstructure with grains, 

phases, defects, or even atoms is a key stage in such 

a computer-aided material design. These digital ma-

terial representation based (DMR) models have ca-

pabilities not only to recreate the morphology of 

microstructure but also to assign various material 

properties to subsequent micro-scale features 

(Madej, 2017). However, to properly replicate mi-

crostructure morphology in a digital sense, the so-

phisticated numerical algorithm has to be developed. 

A DMR model can be created by the two con-

ceptually different approaches. In the first concept, 

digital microstructure morphologies are recreated 

based on the experimental data acquired by, e.g., 

scanning electron microscopy electron backscattered 

diffraction technique SEM/EBSD (Raabe & Becker, 

2000; Sitko et al., 2020), using complex algorithms 

for image and data analysis. Most of the times, the 

metallography investigation with light microscopy 

(LM) or electron microscopy (EM) is used to pro-

vide experimental data on microstructure state in the 

2D space. For the 3D case, the serial sectioning 
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(Hoffpauir et al., 2007; Echlin et al., 2020) or tomo-

graphic methods, e.g., computed tomography (CT) 

or atom probe tomography (APT) are used depend-

ing on the type of material and size of the investigat-

ed volume (Banhart, 2008; V§s§rhelyi et al., 2020). 

These approaches provide the exact representation 

of the investigated region; however, due to the re-

quired significant amount of experimental data, they 

are still considered as time-consuming and expen-

sive. Therefore, the second concept is based on the 

generation of the synthetic models recreating micro-

structure state in a statistical manner with numerical 

algorithms, e.g., Voronoi tessellation, Monte Carlo 

Pots Model, etc. A detailed review of the topic can 

be found in (Madej, 2017).  

A promising approach in the latter concept is the 

application of the circle/sphere/ellipse/ellipsoid 

packing algorithms (Jodrey & Tory, 1979; Visscher 

& Bolsterli, 1972; Orick et al., 2017; Romanova et 

al., 2020), generally referred here as sphere packing 

ones. This class of methods can be primarily divided 

into dynamic and constructive solutions. In the dy-

namic approaches, the spheres change their position 

or their size during the packing process, which is 

controlled by a shrinking algorithm (Tory & Jodrey, 

1986; Torquato & Jiao, 2010; He et al., 2018), com-

pression forces algorithm (Khirevich, et al., 2013; 

Baranau & Tallarek, 2014) or gravitational algo-

rithm (Shi & Zhang, 2008; Hitti & Bernacki, 2013; 

Sahu, 2009; Ilina & Bernacki, 2016). In the case of 

constructive approaches, sphere parameters like size 

or position are preserved during the packing process, 

so they are less costly but have difficulties in achiev-

ing high-density packing (Evans, 1993; Cui & 

OôSullivan, 2003; Kazakov et al., 2018).  

 The primary goal of these methods is to obtain a 

densely packed computational domain (Clarke & 

Wiley, 1987). However, the problem of precise con-

trol of spheres diameter to obtain heterogeneous 

microstructure morphologies with required size dis-

tribution is equally important and, therefore, is ad-

dressed within the current work.  

The gravitational sphere packing method was se-

lected for the investigation as an efficient algorithm 

that has the capability of generating complex micro-

structure morphologies using densely packed parti-

cles. A series of modifications were developed and 

introduced to the classical algorithm in order to pro-

vide the possibility for computationally efficient 

generation of microstructure morphologies with 

controlled non-homogeneous grain size distribution. 

Finally, to provide a realistic representation of grain 

boundary geometry, the sphere packing algorithm 

was combined with the cellular automata grain 

growth model.  

2. MATHEMATICAL MODEL O F THE 

SPHERE PACKING ALGOR ITHM  

The synthetic digital microstructure is generated 

in the developed approach within five major steps. 

The first is responsible for the generation of the 

2D/3D computational domain in the form of cube, 

square, rectangle or cuboid, as seen in figure 1. 

In this case, from the definition of the computa-

tional domain, its origin is in the (0,0,0) point, which 

is located in the left bottom corner, and spreads to 

the right top corner located in (n,m,o) point. Then 

during the second step of the algorithm, a generation 

of circles/spheres with required size distribution is 

realized. These circles/spheres are defined by their 

id number, centroid point, and radius r, as seen in 

figure 2 for the 3D and 3D space, respectively. Spe-

cific radii are generated according to the defined size 

distribution. Three different options have been in-

vestigated in this case: the unimodal, bimodal and 

trimodal (figure 3). 

 

 

Fig. 1. Investigated geometries of computational domain: a) square with size nĬm, b) cube with size nĬmĬo o, c) rectangle with size 
nĬm and d) cuboid with size nĬmĬo. 
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Fig. 2. Definition of a) circle, b) sphere with defined radius. 

 

Fig. 3. Grain size distribution functions: unimodal, bimodal and 
trimodal. 

Then, during the third step of the developed al-

gorithm subsequent circles/spheres are initially lo-

cated at the top of the computational domain as seen 

in figure 4, and are then subjected to the algorithm 

responsible for their downward movement until 

impingement that prevails further changes in the 

position. The algorithm is based on a series of steps 

dealing with defined different events that can occur 

during the movement of an investigated shape. 

 

Fig. 4. Computational domain with an initial position of the 

generated shape (circle case study). 

 

In this case, in each iteration the y position of the 

centre of the ith moving shape is translated vertically 

by dy = 0.05r i until: 

   i iy r²       (1) 

To verify that the new position does not collide 

with neighbouring shapes, the following expression 

is used: 

( ) ( ) ( )
2 2 2

i i jj j ir r x x y y+ ² - + -   (2) 

where: xi, yi ï coordinates of the 2D moving 

shape, r i ï radius of the 2D shape, r j, xj, yj, are 

corresponding parameters for all neighbouring, 

stationary shapes N,  jÍ[1,N]. 

If the collision is identified, then the investigated 

shape is translated to the sides, and several cases are 

considered as schematically shown in figure 5 and 

figure 6. 

The rotation after collision results in a change in 

the xi and yi values: 

 i ix x dx= °      (3) 

( ) ( )
2 2

i j i j i j     y r r x x y= + - - +   (4) 

where: dx = 0,01r. 

 

Fig. 5. Flow chart for the shape movement algorithm in the 2D 
space. 
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Fig. 6. Flow chart for the shape movement algorithm in the 2D space. 

 

When the circle becomes stationary, its parame-

ters are saved into the list of stationary shapes. This 

algorithm is performed until the computational do-

main is unable to accommodate more shapes.  

Capabilities of the developed model were tested 

on the basis of three case studies for different size 

distributions, as shown in table 1. Examples of ob-

tained results for the computational domain with the 

550Ĭ300 px are presented in figure 7, figure 8 and 

figure 9. 

Table 1. Parameters for the three case studies of the developed 2D 

version of the algorithm. 

Distribu-

tion 

Range of 

radius, px 
m, px ů, px 

Packing 

density, 

% 

Unimodal [1; 15] 8 3 77.01  

Bimodal 
[1; 5] 

[10; 15] 

3 

12 

1 

3 
78.16 

Trimodal 

[1; 3] 

[5; 9] 

[12; 15] 

2 

7 

13 

1 

3 

1 

77.78 

 

 
Fig. 7. Results for the unimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size 
distributions. 

 
Fig. 8. Results for the bimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size 
distributions. 
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Fig. 9. Results for the trimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size 
distributions. 

As presented, the developed algorithm provides 

results with required size distribution for simple 

unimodal as well as multimodal cases. Results are a 

good representation of the theoretical size distribu-

tion with just a slight discrepancy. The packing den-

sity in these 2D models is at the level above 77%.  

The same algorithm is also adapted to the 3D 

space with the shapes represented by spheres. How-

ever, in this case, aside from x and y, also the z co-

ordinate is taken into account. Therefore, the colli-

sion event is identified by the following equation: 

( ) ( ) ( ) ( )
2 2 2 2

1 2 1 2 1 2 1 2r r x x y y z z+ ² - + - + - (5) 

The sideways movement to relocate the centre of 

the sphere after the collision is controlled by: 

1

0

( )
n

i

i

x x

dx
n

=

-

=
ä

    (6) 

1

0

( )
n

i

i

y y

dy
n

=

-

=
ä

    (7) 

1

0

( )
n

i

i

z z

dz
n

=

-

=
ä

    (8) 

Capabilities of the developed model were again 

tested on the basis of three case studies from table 2. 

The size of the computational domain was assumed 

to be 550Ĭ300Ĭ150 px. Examples of obtained results 

are presented in figure 10, figure 11 and figure 12. 

Table 2. Parameters for the three case studies of the developed 3D 

version of the algorithm. 

Distribu-

tion 

Range of 

radius, px 
m, px ů, px 

Packing 

density, 

% 

Unimodal [1; 15] 7 3 45.73  

Bimodal 
[1; 6] 

[10; 15] 

3 

12 

3 

1 
45.9 

Trimodal 

[1; 3] 

[5; 9] 

[12; 15] 

2 

7 

13 

1 

3 

1 

45.49 

 

In the 3D case studies, the packing density is re-

duced to approx. 45%. Unfortunately, the lower the 

packing density, the higher the deviation from the 

required size distribution after the subsequent cellu-

lar automata grain growth stage is expected. 

 

 
Fig. 10. Results for the unimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size 
distributions. 
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Fig. 11. Results for the bimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size 
distributions. 

 
Fig. 12. Results for the trimodal distribution: a) packed computational domain, b) comparison of the theoretical and obtained size 
distributions. 

3. CELLULAR AUTOMATA GR AIN 

GROWTH ALGORITHM  

The creator of Cellular Automata (CA) is J. von 

Neumann, who in the early 1960s used them to de-

scribe processes relevant to the phenomenon of rep-

lication of living organisms (Von Neumann, 1966). 

Later, this method became very popular in various 

fields of science and technology, including material 

science (Raabe & Becker, 2000). 

The cellular domain is described by means of a 

regular grid of cells. Each CA cell has an id number 

and a specified type of neighbourhood. The id num-

ber is used to represent CA cells belonging to the 

same grain in the polycrystalline microstructure. If 

the id equals 0, then the cell is empty and can be 

updated according to some fixed transition rules. If 

not ï the element is assigned to n-th grain, where n 

is grain number. The neighbourhood is a set of cells 

related to a specified element of the grid, which are 

used to determine its id in the next step of the algo-

rithm. Moreover, boundary conditions at the compu-

tational domain have to be specified, e.g., periodic 

or absorbent, respectively. 

To initiate the cellular automata grain growth al-

gorithm, the generated computational domain has to 

be discretized by the regular space of CA cells. In 

the paper, the geometry of each CA cell is a square 

in 2D and a cube in 3D space. The concept of the 

developed mapping algorithm of the closed packed 

shapes into the CA space is shown in figure 13.  

 

 
Fig. 13. Example of the mapping process for 2D space: a) geometrical description of the generated shape, b) identification of the 
overlapping area with CA spaces, c) conversion to the CA space. 
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The same approach can be used to 2D and 

3D computational domains, with appropriate 

conversion equations: 

( ) ( )
22 2

Ŝ Ŝi r j rx x y y r- + - <   (9) 

( ) ( ) ( )
22 2 2

Ŝ Ŝ Ŝi r j r k rx x y y z z r- + - + - <  (10) 

Finally, the CA grain growth model described in 

(Madej, 201) was implemented in this work to ob-

tain the final digital microstructure model.  

The computational domain is additionally split 

into N equally sized parts, which are processed sepa-

rately by different threads to decrease the computa-

tional time of the developed algorithm. The applied 

method executes one of the loops ñforò, so each 

iteration may be run in parallel. The number of itera-

tions that can run in parallel is set up according to 

the number of processors. 

To check the influence of circles/spheres pack-

ing density on the final grain size distribution the 

input data from figure 7 - figure 12 after conversion 

were used during the CA growth stage. Examples of 

obtained results are shown in figures 14 - 19. 

 
Fig. 14. Results for the unimodal distribution: a) 2D digital microstructure, b) comparison of the theoretical and obtained size 

distributions. 

 
Fig. 15. Results for the bimodal distribution: a) 2D digital microstructure, b) comparison of the theoretical and obtained size 

distributions. 

 
Fig. 16. Results for the trimodal distribution: a) 2D digital microstructure, b) comparison of the theoretical and obtained size 
distributions. 
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Fig. 17. Results for the unimodal distribution: a) 3D digital microstructure, b) comparison of the theoretical and obtained size 
distributions. 

 
Fig. 18. Results for the bimodal distribution: a) 3D digital microstructure, b) comparison of the theoretical and obtained size 
distributions. 

 

Fig. 19. Results for the trimodal distribution: a) 3D digital microstructure, b) comparison of the theoretical and obtained size 
distributions. 

As seen in each case study, the final grain sizes 

are larger than close-packed shapes sizes, because 

the initial domain is not filled in 100%. For tests 1, 2 

and 3 (table 1), the packing density is at the level 

above 77%. The empty spaces occupy less than 23% 

of the computational domain; therefore, quite similar 

distributions after the CA grain growth algorithm 

were obtained. Unfortunately for 3D domains, only 

45% of the computational domain is filled with 3D 

shapes, and after the grain growth, the discrepancies 

in the final grain size distributions are significant.   

One of the approaches to overcome the issue 

with low packing density is to use optimization algo-

rithms during the sphere packing stage as described 

in (Madej, et al., 2014). The other is the substitution 

of the spherical shape of objects by the elliptical 

ones. This will be the subject of future work.  

As the model contains stochastic elements, to 

evaluate its robustness, the additional set of calcula-

tions was designed and executed. For this, each of 

the presented earlier case studies was recalculated 

ten times and compared with the appropriate distri-

bution to confirm that the model provides repeatable 

results. Obtained data are summarized in the last 

column of table 3. 

Presented results confirm that generated objects 

have dimensions within the range provided by the 

distribution. The number of objects for a given size 

was slightly different in each simulation, but it does 

not affect the overall model response. 

 


