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Abstract 

The model describing evolution of dislocation population based on fundamental works of Kocks, Estrin and Mecking 

(KEM) is a useful tool in modelling of metallic materials processing. In combination with the Sandstrom and Lagneborg 

approach it can predict changes of the dislocation density accounting for hardening, recovery and recrystallization. Nu-

merical solutions of a one-parameter model (average dislocation density), as well as for two types of dislocations and 

three types of dislocation are described in the literature. All these solutions were performed for deterministic variables. 

On the other hand, an advanced modelling of materials requires often an information about distribution of parameters. 

This is the case when uncertainty of the model has to be evaluated or when an information about distribution of product 

properties is needed. The latter is crucial when deterioration of local formability is caused by sharp gradients of proper-

ties. Thus, the investigation of possibilities of numerical solution for the KEM model with stochastic variables was the 

main objective of the present work. Evolution equation was written for the distribution function and solution was per-

formed using Monte Carlo method. Analysis of the results with respect to the reliability and computing costs was per-

formed. The conclusions towards selection of the best approach were formulated. 
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1. INTRODUCTION 

Modern approaches in advanced modelling of 

complex materials like multiphase steels often re-

quire information about the distribution of the mi-

crostructural parameters and resulting mechanical 

properties. The latter is crucial when sharp gradients 

of properties cause the deterioration of local forma-

bility. Importance of determination of these gradi-

ents is discussed in Szeliga at el. (2019). Obtaining 

the distribution of the factors that influence the gra-

dient of properties is one of the possible approaches 

to the evaluation of local formability. The three key 

factors which define the gradient of properties are: 

carbon distribution in phases, precipitation and evo-

lution of dislocations in ferrite close to the boundary 

with hard constituents. The current paper is focused 

on the new approach to modelling evolution of dis-

locations density, accounting for the stochastic char-

acter of this variable. 

The model describing evolution of dislocation 

population based on fundamental works of Kocks,  

Estrin and Mecking (Mecking & Kocks, 1981; (Es-

trin & Mecking, 1984), known as KEM model is 

used widely in modelling of materials processing. In 

combination with the Sandstrom and Lagneborg 

(1975) approach it is able to predict changes of the 

dislocation density accounting for hardening, recov-

ery and recrystallization. Numerical solutions for a 

one-parameter model (average dislocation density) 

by Ordon et al. (2000), as well as for two types of 

dislocations by Estrin (1996) and three types of dis-

location by Roters et al. (2000) are described in the 

literature. Among papers, in which dislocation den-
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sity based model was used to describe dynamic re-

crystallization, the work (Gao et al., 2019) should be 

mentioned. The Authors of this paper implements 

their model in the FE program and performed simu-

lations of industrial process of the friction stir weld-

ing. 

 There are also several recent examples of appli-

cation of this model to cold forming (Schacht et al., 

2017) or creep (Yadav et al., 2017). The convention-

al constitutive models for single crystals, including 

the kinematics of single-crystal plasticity and dislo-

cation density evolution, are described in the litera-

ture, as well (Zhuang et al., 2019). A large number 

of papers published during the last decade deals with 

advanced applications of the internal variable meth-

od to simulation deformation and microstructure 

evolution in various alloys, eg. aluminium alloys 

(Huang et al., 2017; Zamani et al., 2017; Poletti et 

al., 2019), magnesium alloys (Guo & Wu, 2018), 

Mg-Al-Zn alloy (Dini et al., 2018), pure copper 

(Huang et al., 2009) or lead (He & Yao, 2019). 

Pham et al. (2015) used dislocation based model for 

the quantification of complex strain path response in 

alloys. Such dislocation features as dislocation for-

ests, walls and channels were distinguished. Review 

of the publications confirms extensive predictive 

capabilities of the constitutive modelling based on 

the evolution of the dislocations populations. 

All mentioned approaches solve the constitutive 

equation for deterministic variables. In the present 

day, more often the case when uncertainty of the 

model has to be evaluated as well as an information 

about distribution of product properties is needed. 

One of the possible approaches to take into account 

uncertainty and provide the ability to predict gradi-

ents of material properties is the introduction of 

stochastic variables. Such kind of approach to mi-

crostructure evolution modelling was performed by 

Nastac (2018) and Nastac and Zhang ( 2014). Other 

applications of this approach include prediction of 

the stored energy in the material, which can be used 

in parallel with the micromechanical model to esti-

mate the temperature rise during dynamic plastic 

deformation (Nieto-Fuentes et al., 2018). Few at-

tempts to apply stochastic solution to describe dislo-

cation motion can be found in the literature but the 

focus was on the nano-scale analysis. Few decades 

ago Bako and Groma (1999) proposed computer 

simulation method based on stochastic integration to 

investigate the dynamic properties of a system of 

parallel straight dislocations. Chattopadhyay and 

Aifantis (2016) considered spatially inhomogeneous 

modes, which lead to randomness in the observed 

deformation structure.  Huang et al. (2016) consid-

ered probability distribution of dislocation density to 

describe the dislocation formation in terms of a 

chain reaction and performed scaling of the harden-

ing exponent to account for the size effect. All these 

papers, however, consider the effects appearing in 

the polycrystals materials due to fluctuations of in-

ternal stress. The Authors of the present paper fo-

cused on the development of the model, which pre-

dicts heterogeneity of dislocation density in the mi-

crostructure and can be further used to evaluate het-

erogeneity of the material properties. Thus, the in-

vestigation of possibilities of numerical solution for 

the KEM model with additional recrystallization 

term for stochastic variables was the main objective 

of the present work. Selection of the best method 

and evaluation of computing costs were performed. 

It is expected that the model will be a usefull tool in 

modelling various phenomena which depend on 

dislocation plasticity, eg. phase transformations 

(Levitas et al., 2013). 

In the case of stochastic solution problem of 

convergence and uniqueness becomes important. To 

evaluate these features a quantitative comparison of 

the subsequent stochastic solutions is needed. Com-

parison of the two solutions given in a form of the 

distribution function is a challenge. In the present 

work the method based on the Hellinger distance 

(Hellinger, 1909) was applied to solve this problem.  

2. BASIC EQUATIONS 

The evolution of the dislocations populations ac-

counting for hardening, recovery and recrystalliza-

tion in KEM approach is given by: 

1 2 3( ) ( ) ( ) ( )crt A A A t t t t       R  (1) 

where:  – average dislocation density,  ̇- strain rate, 

t – time, tcr – time at which critical dislocation densi-

ty for dynamic recrystallization (cr) is reached, A1, 

A2, A3 – coefficients, and: 

0 for
( )

1 for

cr

cr

t t
t

t t


  


 (2) 

As it has been mentioned, numerous examples of 

the solution of equation (1) for deterministic varia-

bles can be found in the literature. Performing the 

solution for the stochastic variable (t) was the ob-

jective of the present work. 
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3. STOCHASTIC MODEL DESCRIPTION 

Solution of equation (1) for deterministic values 

gives the average values of microstructural parame-

ters. However as it was mentioned above, the distri-

bution of these parameters is needed to predict ad-

vanced properties of products. Therefore, an intro-

duction of the dislocation density distribution func-

tion   into (1) was proposed by Sandstrom and La-

gneborg (1975). The quantity 

 ( ),G t t d
 


 



  (3) 

represents the probability that material has disloca-

tion density in the range between   and   at the time t. 

It can be interpreted as a volume fraction of the ma-

terial with given dislocation density.  

Thus, the fluctuation in the dislocation density 

due to storage, recovery and recrystallization is de-

scribed by the evolution of the volume distributions 

of dislocations. In the stochastic approach which is 

proposed in this work the dislocation density at the 

beginning of the process (time equal 0) is presented 

in a form of a random variable drawn from the given 

distribution (e.g. a normal one): 

2

0
0 22

( )1
( ,0) exp

22

aveG
 




 
  

 
 (4) 

where: G(0,0) – distribution function of the disloca-

tion density in the time 0, 0 – average dislocation 

density at the beginning of the process, ave –  aver-

age dislocation density in the recrystallized material, 

which in the present work was assumed as 10
-4

 m
-2

, 

 – standard deviation. 

To determine the G( (t),t) function, which de-

scribes the probability distribution of dislocation 

density in time the Monte Carlo (MC) method was 

applied to draw a random variable of the dislocation 

density. The solution was obtained by solving equa-

tion (1) for each of the points selected from the gen-

erated distribution (4). 

Proposed change in the approach also allows to 

modify equation (1) to avoid the usage of the artifi-

cial concept of critical dislocation density used in 

equation (1). The new approach allows to present the 

process in more physical way, including continuous 

recrystallization process. This improvement is pos-

sible by representing the third term in the equation 

(1) by a formula based on the JMAK (Johnson-

Mehl-Avrami-Kolmogorov) equation: 

 

  2

1 2 03

( ), (

1 e( x) p

)

n

G t t d t

A A A t k t t

 


 

  



   
 

  


 (5) 

where: 

10
1

1
,

q

A
A l

bl Z
   (6) 

2 20

3 30

exp

exp

SD

RX

Q
A A

RT

Q
A A

RT

 
  

 

 
  

 

 (7) 

and   – dislocation density at a time t, G(,t)- prob-

ability distribution of dislocation density, QSD – acti-

vation energy for self-diffusion, QRX – activation 

energy for recrystallization, b – Burgers vector, l – 

mean free path for dislocations, Z – Zener-Hollomon 

parameter, t0 – time when the last complete recrys-

tallization occurred (each particle had recrystallized 

at least once), A10, A20, A30, q, k, n – model parame-

ters. 

The recrystallization term in the equation (5) is 

increasing both with time and dislocation density. At 

the beginning of the deformation process the value 

of this term is negligible and it grows scientifically 

with the process progress. Since the resulting change 

of distribution is unpredictable after the recrystalli-

zation term becomes relevant, it is impossible to 

describe it with a continuous function. Because of 

this, the whole domain of possible dislocation densi-

ty values is divided into several intervals and the 

probability distribution is represented by a set of 

discrete probabilities, which represents particles 

having a value from the certain range in the next 

time step. Within each linear interval the distribution 

is assumed to be uniform. 

Equation (5) is solved using explicit finite dif-

ference method and after each time step the set of 

dislocation density values is achieved.  Due to 

strengthening and recovery represented by the first 

two terms in equation (5), the dislocation density 

increases for each Monte Carlo point (or remains 

constant, when the balance A1 = A2 is reached). 

This increment of the dislocation density for each 

time step is calculated from the explicit schema: 

 1 2 iA A t      (8) 

where: Δρ – increment of the dislocation density for 

the current time step i, ρi - dislocation density gener-
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ated form the probability distributions for the current 

time step, Δt – current time step. 

This increase of the dislocation density may 

force the particle to move to another interval, which 

in consequence leads to a change of a probability 

distribution. After the new range is found, the re-

crystallization term is applied and it determines the 

probability that recrystallization occurs at the current 

time step basing on the third term of equation (5): 

    2

3 01 exp
 

n

recr

av av

p
A t k t t

 

      
   (9) 

The received value indicates the change in the 

probability of the particle to reach the value in the 

previously found range. This value is applied by 

decreasing the probability of particle to stay in the 

current range without recrystallization and increas-

ing the probability of receiving the initial value after 

recrystallization occurs. After the change is calculat-

ed for each particle, the probability distribution is 

updated and it is used as an input for the next time 

step calculations. The flowchart of the standard 

model run is presented in figure 1. 

4. NUMERICAL TESTS AND 

VERIFICATION OF THE MODEL 

Proposed model was implemented and a series 

of numerical tests was carried out. The tests were 

performed for coefficients determined for a stochas-

tic model. The values of coefficients for steel were 

A1 = 2.9510
14

, A2 = 17.09, A3 = 310
-11

. 

The results of simulations for ε = 1 are presented 

in a form of distribution function changes with re-

spect to time. Figure 2 presents the distribution of 

the dislocation density distribution at different stages 

of the process. The results are shown in a form of 

bar charts, which represent the probability of getting 

a value from the corresponding range. Only the sig-

nificant part of the domain is shown in the plots.  

 

Fig. 1. Flow of the calculations in the model. 
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a)  

b)

 

c)  

Fig. 2. Dislocation density evolution at the different stages of 

the process (after 0.03 and 0.15 s (a), 0.3 and 3 s (b), 4.5 and 6 

s (c) for the total strain ε = 1. 

The received results show the dislocation density 

evolution in the metallic material in a form of distri-

bution of probability of getting certain dislocation 

density values by Monte Carlo points. It should be 

noticed that the character of the distribution changes 

drastically when the recrystallization process reaches 

its full rate. The distribution becomes more flat due 

to the fact that different particles represent parts of 

the material with different percentage of recrystal-

lized grains.  

5. COMPUTATION TIME AND PREDICTIVE 

CAPABILITIES CONSIDERATION 

Implementation of the model into the finite ele-

ment model which simulates thermomechanical 

processes in the macro scale is the prospective ob-

jective of the project. Therefore, the computing costs 

are one of an important criterion which can possibly 

prevent this application. Evaluation of the quality of 

model performance for different input data is essen-

tial to prove its ability to be useful in multiscale 

modelling. The quality can be described by the al-

ready mentioned computation time and by the error 

of the model. As far as computation time can be 

directly measured while model is running the error 

of the model can be evaluated by either comparison 

of received results to the experiment data or by nu-

merical estimation. At the current stage of the model 

development the numerical estimation was used, 

since it does not require to perform expensive and 

time-consuming experiments and gives the neces-

sary information about the quality of the model per-

formance. 

The computation time of the model was deter-

mined for the coefficients given above. The compu-

tation time was measured for different number of 

Monte Carlo points and the results obtained on a 

work station with AMD Phenom(tm) II X6 1075T 

Processor and 8 GB RAM are shown in figure 3. 

 

Fig. 3. Computation time of the model as a function of Monte 

Carlo points number. 

From the analysis of the received results it is 

clearly seen that the computation time increases 

linearly with the increasing number of the Monte 

Carlo points. This indicates computational com-

plexity of the problem to be the order of O(n).  

Estimation of the error is a more complex prob-

lem, since the output of the model is presented in the 

form of the probability distribution of the dislocation 
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density values. The difference between the output 

probability distribution for two subsequent model 

runs i and j performed for identical initial data was 

used as the measure of the error. The difference be-

tween probabilities can be calculated in several 

ways. In the present article, the Hellinger (1909) 

distance was chosen: 

   
max

0

,1 ,ij i jd tG G dt t t



           (10) 

where: Gi[(t),t], Gj[(t),t], probability distributions 

for two subsequent model runs i,j, max - maximum 

dislocation density. 

Since the model includes the numerical solution 

of the main equation, which leads to representing the 

distribution in a form of a set of discrete probability 

values, the Hellinger distance formulation for dis-

crete distribution should be used instead: 

 
2

1

1

2

M

ij ik jk

k

d  


   (11) 

where: ik = {i1, i2,… iM}, jk = {j1, j2,… jM} – 

two discrete probability distributions for two subse-

quent model runs, M - number of MC points. 

Since the distribution changes with respect 

to time during the solution process and the 

whole change is considered as model output, it 

is necessary to determine the Hellinger distance 

with respect to time to get the whole picture of 

the model error change. The determined results 

for different numbers of Monte Carlo points and 

for the model coefficients given above are 

shown in figure 4. 

 

Fig. 4. Average Hellinger distance for different numbers of the 
Monte Carlo points. 

In order to create a simplified measure of the 

error of the model the average over time 

Hellinger distance was calculated. This measure 

describes the overall performance of the model 

and can be used for further optimization of the 

number of the Monte Carlo points. The depend-

ence of the average Hellinger distance on the 

number of points is shown in figure 5. 

 

Fig. 5. Average Hellinger distance for different numbers of the 
Monte Carlo points. 

The presented results show that the depend-

ence of Hellinger distance on time is nonlinear 

and there exists a number of the Monte Carol 

points, above which the gain in accuracy is too 

small comparing to the loss in computation 

time. This point can be considered an optimal 

number of the Monte Carlo points 

6. OPTIMIZATION OF THE MONTE CARLO 

POINTS NUMBER 

As it can be concluded from the results re-

ceived in previous paragraph, there should exist 

an optimal number of the Monte Carlo points. 

This value can be found by solving a simple 

optimization task. In order to formulate the task 

a goal function should be composed. The quali-

ty of model performance was evaluated basing 

on the two key parameters: computation time 

and estimated error. In order to be able to com-

pose the goal function, results for both were 

approximated with mathematical functions. 

Both curves can be approximated in an accurate 

enough way with MS Excel trendlines. The rel-

evant equations are presented in figures 3 and 5 

respectively. The normalization of the received 
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functions is necessary for composition of the 

goal function. Thus, the goal function can be 

created as follows: 

 
   

max min max min

t d

t M d M
M w w

t t d d
  

 
 (12) 

where: M - number of the Monte Carlo points, wt, wd 

– weights of the parameters, tmax, tmin, dmax, dmin, – 

borders of the range of the received values of the 

parameters for computation time and Hellinger dis-

tance respectively, t(M),  d(M) – approximation 

function for computation time and Hellinger dis-

tance, respectively. 

Weights wt, wd define the importance of the 

parameter for the particular case. The results of 

the optimization process for different weights 

are presented in table 1. 

Table 1. Optimal number of the Monte Carlo points for different 

weights of the parameters. 

w1 w2 M 

0.5 0.5 2385 

0.25 0.75 5282 

0.75 0.25 1077 

0.1 0.9 11696 

0.9 0.1 487 

 

Compatibility of results should be considered 

satisfactory, taking into account the fact of up to 

three plastically deformable materials interaction, 

for which elastic-plastic with hardening models are 

applied. 

7. CONCLUSIONS 

 The proposed stochastic model can be a viable 

approach in modelling thermomechanical pro-

cessing accounting for the recrystallization. 

 The usage of Monte Carlo method is a viable 

approach to solving the main equation of the pro-

posed model. 

 The approach gives information about the proba-

bility distribution of dislocation density at every 

time step. 

 The solution of the model is reasonably simple 

and not time-consuming. 

 The error of the model was estimated numerically. 

The Hellinger distance was selected as an error 

measure. It was shown that there exists a number 

of the Monte Carol points, above which the gain 

in accuracy is too small comparing to the loss in 

computation time.  

 Solving a simple optimization task allowed to 

determine the optimal number of the Monte Carlo 

points with respect to computation time and esti-

mated error of the numerical solution. 

 The proposed model requires an experimental 

validation and an identification algorithm, which 

are the main parts of the further research. 
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MOŻLIWOŚCI NUMERYCZNEGO 

ROZWIĄZANIA RÓWNANIE OPISUJĄCEGO 

EWOLUCJĘ DYSLOKACJI DLA ZMIENNYCH 

STOCHASTYCZNYCH 

Streszczenie 

Model opisujący ewolucję populacji dyslokacji wykorzystujący 

fundamentalne prace Kocksa, Estrina i Meckinga (KEM model) 

jest użytecznym narzędziem w modelowaniu przetwórstwa 

materiałów metalicznych. W połączeniu z modelem Sandstroma 

i Lagneborga możliwe jest przewidywanie zmian gęstości dys-

lokacji uwzględniając zjawiska umocnienia, zdrowienia i rekry-

stalizacji. Numeryczne rozwiązania dla jednoparametrowego 

modelu (średniej gęstości dyslokacji), jak i dla dwóch lub trzech 

rozdajów dyslokacji, jest opisane w literaturze. Te rozwiązania 

zostały przeprowadzone dla zmiennych deterministycznych. Z 

drugiej strony zaawansowane modelowanie materiałów wymaga 

informacji o rozkładzie parametrów. Ma to miejsce np., kiedy 

potrzebna jest ocena niepewności wyników lub informacja o 

funkcji rozkładu własności materiału. To ostatnie jest ważne, 

kiedy obniżenie lokalnej odporności mateiału na pękanie jest 

powodowane przez ostre gradienty własności.  Stąd celem ni-

niejszej pracy była ocena możliwości numerycznego rozwiąza-

nia dla modelu KEM ze zmiennymi losowymi.  Równanie ewo-

lucji dyslokacji zapisano dla funkcji rozkładu prawdopodobień-

stwa i przeprowadzono rozwiązanie wykorzystując metodę 

Monte Carlo. Przeprowadzono analizę wyników w aspekcie ich 

dokładności oraz oceniając koszty obliczeń. Sformułowane 

zostały wnioski sugerujące dobór najlepszych parametrów mo-

delu numerycznego. 
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