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Abstract 

The QD nanostructures are analyzed under a thermal load. The dimensions of the QDs are of the same order as the 

material length scale. Therefore, the gradient elasticity theory should be applied to account for the size-dependent behav-

ior of such nano-sized QDs. Since governing equations contain higher order derivatives than in conventional approaches 

the C1-elements are required for approximation of primary fields in the FEM. The mixed FEM are developed here, where 

C0 continuous interpolation is applied independently for displacement and displacement gradients. The kinematic con-

straints between strains and displacements are satisfied by collocation at some cleverly chosen internal points in elements. 

A unit cell of Indium Arsenide QD in a finite sized Gallium Arsenide (GaAs) substrate is analysed. 
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1. INTRODUCTION 

 Quantum Dots (QDs) offer revolutionary ad-

vantages in their wide range of applications such as 

solid state lighting, power efficient LEDs for superi-

or performance in displays and photovoltaics, solar 

cells, quantum computing and medical imaging. 

Quantum dots are tiny nanocrystals of a semicon-

ducting material with characteristic length of several 

nanometers and they are buried into piezoelectric 

matrix. The QDs can be tuned during manufacturing 

to emit any colour of light from the same material 

simply by changing the dot size. Due to lattice mis-

match or thermal expansion difference between the 

QD and matrix both elastic and electric fields are 

induced in this system (Bimberg et al., 1998). A 

reliable analysis of these fields are crucial to the 

design and fabrication of such structures. In the first 

stage, semi-coupled computational approaches were 

applied to analyze QD systems. In the first step 

strains are computed from pure elasticity equations. 

Then, these results are used to compute electric field 

(Davies et al., 1994; Davies, 1998; Pryor et al., 

1997; Liao et al., 1999; Benabbas et al., 1996; 

Grundmann et al., 1995; Jogai, 2001). Later, Pan 

(2002a, 2002b) demonstrated that the semi-coupled 

model could produce large errors for both the elastic 

and electric fields. Therefore, the fully coupled ap-

proach should always be used to model QD systems.  

Liu et al. (2008) showed that shape and the area 

density of the QDs can be controlled by varying the 

growth parameters such as the growth temperature,  

growth rate, annealing progress and the growth in-

terruption. Thermal expansion coefficient and pyroe-

lectric parameter can also play a very important role 

in tuning of QDs. Hence temperature can also be 

considered as another tuning parameter. The QDs 

can work at extreme thermal conditions, therefore, it 

is important to understand the steady state and tran-

sient effects of temperature on the QD system. Gia-

zotto et al. (2006) analyzed QDs in low temperature 

regime, and Chen et al. (2008) considered higher 

temperature. Patil and Melnik (2009) applied the 

thermo-piezoelectricity theory for QDs under sta-

tionary boundary conditions.  
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The material length scale is comparable with the 

dimensions of the QDs. Then, the classical thermo-

piezoelectricity theory cannot be applied since it 

neglects the interaction of material microstructure, 

and the results are size-independent. The atomistic 

models have the extremely high requirements on 

computer memory and there are difficulties with 

application to real problems. Advanced continuum 

theories with size effect ability seem to be conven-

ient for our QD system. The former Mindlin’s theory 

(Mindlin, 1964) with two length scales has been 

simplified by Aifantis (1984), Altan and Aifantis 

(1992), Askes and Aifantis (2011) in elasticity. This 

simplified Aifantis theory is extended here to ther-

mo-piezoelectricity.  

This paper presents, for the first time, applica-

tion of the gradient theory of thermo-piezoelectricity 

for 3D analyses of QDs under transient thermal con-

ditions. The FEM in gradient theory requires using 

C1-continuous elements to guarantee the continuity 

of the problem variables and their derivates at the 

element boundaries. It is not an easy task to develop 

C1 continuous elements. It seems to be more con-

venient to construct a mixed formulation for our 

gradient theory. Therefore, the mixed FEM is devel-

oped to solve boundary value problems. It uses the 

C0 continuous interpolation independently for dis-

placement and displacement gradients. The kinemat-

ic constraints between strains and displacements are 

satisfied by collocation at some cleverly chosen 

internal points in elements (Bishay & Atluri, 2012). 

The present collocation method reduces the number 

of DOFs with respect to the Lagrangian approach. 

Numerical results obtained by the present gradi-

ent formulation are compared with those obtained by 

the classical coupled thermo-piezoelectric theory, 

and the influence of the size effect parameter is dis-

cussed.  

2. THE GRADIENT THEORY FOR 

THERMO-ELECTRO-MECHANICAL 

FIELDS 

The inherent initial strain induces electric and 

elastic fields in the QD system. This initial strain is 

produced by the lattice mismatch. A periodic distri-

bution of QDs in the matrix is considered and a rep-

resentative volume element (RVE) illustrated in 

figure 1 (top) is numerically analyzed. 

 

      

Fig. 1. A unit cell of QD piezoelectric structure (top) with FE 
mesh around the QD (bottom). 

 It is considered thermo-piezoelectricity, where 

the heat generation caused by mechanical/electric 

fields is very weak (Patil & Melnik, 2009). Howev-

er, the stresses and electrical displacements can be 

influenced by temperature variation. For typical 

material coefficients the changes of the electromag-

netic fields can be assumed to be immediate, or in 

other words the electromagnetic fields can be con-

sidered quasi-static (Parton & Kudryavtsev, 1988). 

 

We define kinematic equations for strain tensor 

ij, the electric field vector Ej and the temperature 

gradient vector j by: 

 , ,

,

,

1

2
ij i j j i

j j

j j

u u

E





 

 

 



    (1) 

where: ui, ,    - displacements, the electric poten-

tial and the temperature, respectively. 
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The total strain is given as a sum of elastic and 

thermal strains and eigestrains: 

*

*

1, in QD

0, in matrix

e
ij ij ij ij

m QD
ij

QD

a a

a

    

 



  





 


    (2) 

where: ij  - the coefficients of linear thermal expan-

sion, *
ij  - the eigenstrain tensor,  am, aOD - lattice 

constants of the matrix and QD, respectively. 

The lattice mismatch inside the matrix is ne-

glected and homogeneous eigenstrains inside the QD 

are assumed (Patil & Melnik, 2009). The strain-

gradient tensor is defined as: 

 , , ,

1

2
ijk ij k i jk j iku u       (3) 

Then, the elastic strain gradients are defined as: 

 , ,

e e

ijk ij k ij ij k
           (4) 

where: *
,ij k  = 0. 

 The gradient theory is applied to the piezoelec-

tric solids under thermal loads in this work. The 

deformation energy density in gradient theory for 

thermo-piezoelectricity is written as (Toupin & Ga-

zis, 1963; DiVincenzo, 1986) 

 
1

, , , ,
2

1 1 1

2 2 2

ijkl ij kl

ijklmn ijk lmn ij i j ij i j

ijk ij k ij ij ijkl ij kl i i

c

g h E E

e E c p E

  

    

      

 

  

   

ε ε E β

 (5) 

where: cijkl, eijkl, hij, pi, ij  - the material elastic, pie-

zoelectric, dielectric, pyroelectric and thermal con-

ductivity tensors in the thermo-piezoelectric medi-

um, respectively. The high-order elastic tensor is 

denoted by gijklmn. The stress-temperature modulus γij  

can be expressed as  γij  = cijklkl, where kl is the 

linear thermal expansion coefficient 

The constitutive equations for the Cauchy stress  

ij, the higher-order stress ijk, the electric displace-

ment Di   and heat flux vector i can be obtained 

from the deformation energy density as: 

( , )

( , ) ( , ) ( , ) ( , )

ij

ij

ijkl kl kl kij k ij

t

c t t e E t t




   





    
 

x

x x x x

(6) 

( , ) ( , )ijk ijklmn lmn

ijk

t g t 



 


x x   (7) 

( , )

( , ) ( , ) ( , )

i
i

ijk jk ij j i

D t
E

e t h E t p t 


 


 

x

x x x

  (8) 

( , ) ( , )ijk i ij j
i

t t   



   


x x    (9) 

where: t - the time. 

One can see that in this uncoupled thermo-

piezoelectricity the heat flux is independent of the 

elastic and electrical fields. Constitutive equations 

(6) – (9) for material with cubic symmetry can be 

written in matrix form, using the reduced Voigt no-

tation, as: 

11
11 11 12 12

2222 12 11 12

33 12 12 11 33

23 44 1423

13 44 14
13

12 44 14
12

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 02

0 0 0 0 0 0 0
2

0 0 0 0 0 0 0
2

r

r

r

r

r

r

c c c

c c c

c c c

c e

c e

c e






 

 







 
      
     
     
     

      
     
     
     
      

 

11

22
1

33
2

3

0

0

0

E

E

E








 
  
   
   

   
   
   

 
 

   (10) 



C
O

M
P

U
T

E
R

 M
E

T
H

O
D

S
 I

N
 M

A
T

E
R

IA
L

S
 S

C
IE

N
C

E
 

INFORMATYKA W TECHNOLOGII MATERIAŁÓW 

  – 84 – 

11

22

1 14 11 1 1
33

2 14 11 2 1

23
3 14 11 3 1

13

12

0 0 0 0 0 0 0

0 0 0 0 0 0 0
2

0 0 0 0 0 0 0

2

2

D e h E p

D e h E p

D e h E p














 
 
 
         

                      
                   

 
 
 

     (11) 

1 11 1

2 11 2

3 11 3

0 0

0 0

0 0

  

  

  

    
         
        

   (12) 

2 2rl l τ Cη Cαβ     (13) 

where:  

11 11 12 12 11

22 12 11 12 11

33 12 12 11 11

c c c

c c c

c c c

 

 

 

    
        
         

   (14) 

and r
ij ij ij      

It is considered above that higher-order elastic 

parameters gijklmn are proportional to the convention-

al elastic stiffness coefficients cklmn by the internal 

length material parameter l (Gitman et al., 2010; 

Liang & Shen, 2013; Yaghoubi et al., 2017). 

Equations (10)-(12) can be written in a compact 

form as: 

r

T





  

  



σ Cε ZE γ

D Z ε GE p

λ κβ

    (15) 

Recently, the authors have derived the governing 

equations for gradient thermo-piezoelectricity with-

out higher-order effects in the heat conduction equa-

tion (Sladek et al., 2017). In uncoupled thermoelas-

ticity, the temperature distribution is independent of 

the elastic and electrical fields. Then, the governing 

equations derived earlier for the elastic and electrical 

fields are formally unchanged: 

, ,

,

( , ) ( , ) 0

( , ) 0

ij j ijk jk

k k

t t

D t

  



x x

x
   (16) 

Above governing equations have to be supple-

mented by the heat conduction equation: 

, ( , ) ( , ) 0i i t c t   x x     (17) 

where: , c - the mass density and specific heat, re-

spectively. Dots over a quantity indicate time deriva-

tives

Essential and natural boundary conditions (b.c.) 

can be prescribed in the present theory: 

1. Essential b.c.: 

( ) on ,

( ) on ,

( ) on ,

( , ) ( , ) on ,

i i u u

i i s s

i i

u u

s s

t t

 

 

 

 

    

    

    

    

x

x

x

x x

  (18) 

2. Natural b.c. 

( ) on , ,

( ) on , ,

( ) ( ) on , ,

( , ) ( , ) ( ) ( , ) on ,

i i t t u t u

i i R R S t u

S S S

i i

t t

R R

S S

t t n t

 

  

        

        

        

        

x

x

x x

x x x x

 (19) 

where:  

: , :i
i i k j ijk

u
s R n n 


 
n

   (20) 

and the traction vector, and the electric charge 

are defined as: 

 ,: ( ) ( )c ci
i j ij ijk k i

c

t n


   


    


x x x
π

 (21) 

: k kS n D      (22) 

with i: = nkjijk, δ(x) being the Dirac delta func-

tion and j is the Cartesian component of the unit 

tangent vector on Γ. 

The jump at a corner (x
c
) on the oriented bound-

ary contour Γ is defined as: 

( ) : ( 0) ( 0)c c c
i i i     x x x    (23) 

Initial conditions for temperature is assumed as: 

0
( , ) ( ,0) in

t
t 


 x x    (24) 

3. THE MIXED FINITE ELEMENT METHOD 

The weak-form of a boundary value problem in 

gradient thermo-piezoelectricity can be derived from 

the principle of virtual work, where the variation of 
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the electro-elastic Gibbs free energy has to be equal 

to the work of the external generalized forces on 

generalized displacements 

 ,i i c d d



    
 

         (25) 

 , , ,

t R S

ij i j ijk i jk k k

i i i i

u u D d

t u d R s d S d

    

  



  

  

       

  (26) 

where overbar is used for prescribed boundary val-

ues. 

Furthermore, it is assumed that: 

0 0

0 0

t

SR

i

i V

u

s


 

 

 

 

 

 
  

The presence of strain gradients in the defor-

mation energy density requires C
1
 continuous inter-

polations of displacements. The mixed FEM is de-

veloped here, where C
0
 continuous interpolation is 

applied independently for displacement and dis-

placement gradients. The kinematic constraints (1) 

between strains and displacements are satisfied by 

collocation at some cleverly chosen internal points 

in elements (Bishay & Atluri, 2012; Dong & Atluri, 

2011). 

The mechanical displacements and electric po-

tential in each element are expressed in terms of 

nodal values and shape functions: 

 1 2 3, ,u uN   u q     (27) 

 1 2 3, ,N     q     (28) 

where: qu, q, Ni(1, 2, 3,) - nodal displacements, 

electric potential and shape functions, respectively. 

The strain and electric intensity vector can be 

expressed from the kinematic equation (1) and ap-

proximation (27) as: 

11 1

22 2
1 1

33 3
3 2 1 2 3

23 3 2
3 1 3

13 3 1

12 2 1

0 0

0 0
0

0 0
0 ( , , )

2 0

2 0

2 0

u u

u

u

u






  







   
   
      
                               
   

    

ε B q  

1 1 1

1 2 1 2 2 2 3 2 3 1 2 3

3 3 3

( , , )s u

u u u

u n u n u n

u u u

  

     
           
     
          

s B q  

1 1

2 2 1 2 3

3 3

( , , )

E

E

E

    

   
        
   
      

E B q  

1

2 1 2 3 1 2 3

3

( , , ) ( , , )       

 
 

   
  

β N q B q  (29) 

Beside using the mechanical displacement ap-

proximation (27) we use also independent approxi-

mation of strains. These approximations in local 

coordinates can be written as (Bishay & Atluri, 

2012): 

 1 2 3ˆ , ,In   ε A α     (30) 

Where:  - undetermined coefficients. 

For 3D 8-node brick element the polynomial 

function matrix can be given by: 

 

 
1 2 3

1 2 3 1 2 1 3 2 3 1 2 3

, ,

1

  

           

A
 

Bishay and Atluri (2012) recommended to select 

the collocations at Gauss quadrature points. Then, 

one can write: 

   ˆ ˆ, ,In c c
uε ξ α ε ξ q     (31) 

Where: c
 =  1 2 3, ,c c c   - collocation points. 

Collocation is performed for all components at 

the same points. Strains are collocated at the 8 points 

and comparing equations (30) and (29) one can write 

u uAα B q      (32) 

Substituting  from (32) into equation (30), the 

independent strains can be expressed by nodal dis-

placements 

1 2 3ˆ ( , , )In
u  ε A Lq     (33) 

where: L = A
-1

Bu 

The independent strain gradients in local coordi-

nate system are given as: 

 

   

1 1

2 2 1 2 3

3 3

* *
1 2 3 1 2 3

ˆ ˆ , ,

, , , ,

In Ïn

u

  

     

    
      
   
       

 

η ε A α

A α A Lq

  (34) 

To simplify the FEM equations further, we con-

sider vanishing pyroelectric coefficient. The varia-
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tions of the primary field variables can be also ex-

pressed in terms of the variations of the nodal val-

ues. Thus, the variational statements, equations (25) 

and (26), can be rewritten as: 

   

   

 

( ) ( )

( ) ( )

T T c c

T T c c

T

d

c d

d



   

  





 









 

 

  







q B ξ κB ξ q

q B ξ N ξ q

q N

  (35) 

Substituting this into the functional (26) we get: 

   

   

   

   

   

   

   

   

* 2 *

* 2

( )C ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

TT T c c
u u

TT T c c
u

TT T c c
u

TT T c c
u u

TT T c c
u

TT T c
u u

TT c

TT c

d

d

d

l d

l d

d

d

p d

 

 

 

   

  





 































 

 

 

 

 

 

 



L q A ξ A ξ L q

L q A ξ ZB ξ q

L q A ξ γN ξ

A L ξ q CA ξ L q

A L ξ q CαB ξ q

B q Z B ξ q

B q GB ξ q

B q N ξ q

   

 

t R

S

TT
u u s

T

d d

d





 



   

 

q TN q RB

q SN  

 (36) 

Where: C, Z, G - matrices of elastic, piezoelectric 

and dielectric constants, respectively.  

Since the variational forms (35) and (36) are, re-

spectively, valid for any arbitrary  q,  qu, and q 

satisfying the Dirichlet boundary conditions, the 

following system of ordinary differential equations 

and algebraic equations is obtained: 

 

 

( ) ( )

( ) ( )

T c c

T c c

d

c d d



  

 



 

 

    



 

B ξ κB ξ q

B ξ N ξ q N

  (37) 

 

 

 

 

 

* 2 *

* 2

( )C ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

t R

T T c c
u

T T c c

T T c c

T T c c
u

T T c c
s

d

d

d

l d

l d d d

 

 











  



 

 

 

       

L A ξ A ξ L q

L A ξ ZB ξ q

L A ξ γN ξ

A L ξ CA ξ L q

A L ξ CαB ξ q TN RB

      (38) 

   

 

( ) ( )

( )

S

T T c T c
u u

T c

d d

p d d

   

 

 

 

  

    

B Z B ξ q B GB ξ q

B N ξ q SN
 (39) 

4. NUMERICAL RESULTS 

The representative volume element (RVE) in 

figure 1 is assumed to have a cubic geometry with 

side length of 40 nm, and a cubic QD with side 

length of a = 4 nm is embedded in it. The top surface 

of the InAs QD is 4 nm from the top surface of the 

matrix. Material properties of correspond to the InAs 

(Glazov & Pashinkin, 2000). The substrate is made 

of GaAs, whose properties are: 

c11 = 118.8 GPa, c12 = 54 GPa, c44 = 59.4 GPa 

e14 = -0.16 C/m
2
, h11 = 0.134610

-9
 C

2
/Nm

2
,  

 = 5.1 10
-6

 deg
-1

, c = 350 J/kgdeg,  

12 = 0.044 W/m,  = 5.3210
3
 kg/m

3
. 

The lattice constant differences define the ei-

genstrains are *
11  = *

22  = *
33  = 0.07. The pyroelec-

tric coefficient p1 is not considered in the numerical 

analyses since this quantity can be neglected. 

The four side faces of the matrix are fixed along 

their normal direction, the bottom face is fixed along 

its normal direction, and the upper surface is free of 

tractions. Lateral sides and bottom side of the matrix 

cube are thermally isolated. Temperature is prese-

cribed on the top. All surfaces have vanishing nor-

mal component of electric displacement, except for 

the bottom side, where a vanishing electric potential 

is prescribed. One can write the following boundary 

conditions for the InAs/GaAs  quantum dot structure 

(figure 1): 

On surfaces BCGF and ADHE: u1 = 0, t2 =  t3 = 0, 

D2 = 0, q = 0. 

ABFE and DCGH: u3 = 0, t1 =  t2 = 0,  = 0, q = 0. 

EFGH: t3 = 0, t1 =  t2 = 0, D3 = 0,  =  0. 

On the interface between InAs and GaAs, the 

continuity of primary fields has to be satisfied, 

namely: 
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CM
iu  = cQD

iu , m  = OD , m  = OD  

as well as the reciprocity of traction vector, elec-

tric displacement and heat flux: 

0, 0, 0
QD QD QDm m m

i ii iT T D D q q       

A 3D FEM model was created by constructing 

the geometry and meshing it using 195,696 elements 

corresponding to 339,117 nodes as shown in figure 

1. Mixed FEM results can be verified by ANSYS if 

the structural material parameter is vanishing (clas-

sical theory). 

The material length scale parameter is consid-

ered as l = 0.510
-9

 m  (Majdoub et al., 2008). To 

illustrate its influence on strains, there are consid-

ered more values of the intrinsic material character-

istics. This material parameter represents micro-

structural size, and therefore it has to be smaller than 

the size of the QD, a. As such, the admissible di-

mensionless ratio l/a should be restricted to the 

range from 0 to 1.  

To test the computer code we have analyzed the 

QD structure under a thermal load to be 500
o
C if l = 

0. The variation of the strain component 11 along X1 

direction (passing the QD center) and electric poten-

tial  along X3 (aligned with the edge of the QD at 

X1 = 18 nm and X2 = 22 nm) is presented in figure 2. 

One can observe excellent agreement between the 

mixed FEM and ANSYS results with error less than 

1% for both the strain and electric potential. 

 

 
Fig. 2. Elastic strain component 11  along X1-direction (passing 

the QC center) (top) and the potentials   along  X3 at X1 = 18 

nm and X2 = 22 nm (bottom). 

Figure 3 shows the influence of the material 

characteristic length, l, on the normal strains and at a 

constant temperature (250
o
C). As the size-effect 

parameter, l, increases, the magnitude of the strains 

decreases significantly and therefore the correspond-

ing system becomes stiffer. As the QD size gets 

smaller with respect to the parameter l, the strains 

decrease. This provides a new opportunity for de-

signing stiffer QD nanostructure by decreasing the 

size of the QDs to the level that experiences this size 

effect. Furthermore, size-effect eliminates the sharp 

transitions of the strains at the interfaces of the 

boundaries, reducing the field concentration, and 

thus making the structure safer. 

 

 

 
Fig. 3. Variation of normal strains (top) along X3-direction 

(passing the QD center), for various size effect parameters l. 

Next, a transient thermal load is considered. A 

500
o
C temperature shock load on the upper surface 

of the matrix is prescribed. The variations of strain 
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components 11 and 33 along the X1 - and X3 - direc-

tions, respectively, are presented in figure 4 and 

figure 5. 

 

 
Fig. 4. The variation of strain component 11 along the X1 -

direction (passing the QD center) under thermal shock load. 

 

 
Fig. 5. The variation of strain component 33 along X3-direction 

(passing the QD center) under thermal shock load. 

The line l = 0 corresponds to classical elasticity 

at time t = 710
-13

 s. One can observe that induced 

strains are varying with time significantly. If materi-

al structure scale parameter is increasing, the stiff-

ness of system groves and the induced strains are 

reduced. These trends need to be carefully consid-

ered when the nanostructure is under thermal dy-

namic loads 

5. CONCLUSIONS 

The 3D mixed finite element model has been 

developed for thermo-piezoelectric analysis of the 

effect of a thermal shock load on a QD embedded in 

a piezoelectric substrate. The periodic QD array is 

replaced by a representative volume element (RVE), 

which is analyzed by the gradient theory of thermo-

piezoelectricity. It was observed that the largest 

magnitudes of the induced strain fields are within or 

near the QD regions. Then,  the effect of the lattice 

mismatch dominates there. It was also found that 

size-effect parameter increases the stiffness and re-

duces the induced strains if the size of QDs is small-

er. The dynamic thermal loads have a significant 

effect on the induced strains and the QD. The re-

ported observations can be utilized for optimal de-

sign of QD nanostructures thermal loads.  
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MIESZANE SFORMUŁOWANIE MES DLA 

ANALIZY UKŁADU KROPKI KWANTOWEJ Z 

WYKORZYSTANIEM TEORII GRADIENTOWEJ 

Streszczenie 

W pracy opisano analizę nanostruktury kroki kwantowej (QD – 

ang. Quantum-Dot) poddawanej obciążeniom cieplnym. Wy-

miary QD są tego samego rzędu co skala długości materiału. 

Dlatego, aby uwzględnić zależne od wymiaru zachowanie takich 

nano QD, w analizie należało zastosować gradientową teorię 

sprężystości. Ponieważ równania opisujące ten problem zawie-

rają pochodne wyższych rzędów niż wymagane w klasycznych 

rozwiązaniach, do aproksymacji pól w MES należało zastoso-

wać elementy C1. Opracowano mieszane sformułowanie MES, 

w którym ciągła intermpolacja C0 jest zastosowana niezależnie 

do przemieszczeń i gradientów przeieszczeń. Warunki kinema-

tyczne pomiędzy odkształceniami i przemieszczeniami są speł-

nione poprzez rozmieszczenie specjalnie wybranych punktów 

wewnątrz elementów. Analizie poddano jednostkową komórkę 

kropki kwantowej arsenku indu w skończonym obszarze arsen-

ku galu (GaAs). 
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