
 ISSN 1641-8581 29-40

Publishing House

A K A P I T

Vol. 18, 2018, No. 1

USING THE HYPERGRAPH GRAMMAR FOR GENERATION OF QUASI

OPTIMAL ELEMENT PARTITION TREES IN TWO DIMENSIONS

JAKUB RYZNER1, MACIEJ PASZYŃSKI2, ANNA PASZYŃSKA*3

1Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering,

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

2Department of Computer Science, AGH University of Science and Technology,

Al. Mickiewicza 30, 30-059 Krakow, Poland

 3Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University,

ul. St. Łojasiewicza 11, 30-348 Krakow, Poland

*Corresponding author: e-mail: anna.paszynska@uj.edu.pl

Abstract

The paper presents the graph grammar model of Finite Element Method allowing for speeding up performed numerical

simulations. In the presented approach, the finite element mesh operations are performed together with operations generat-

ing so-called element partition tree. The element partition tree sets the ordering of matrix operations performed by solver

in order to solve the computational problem. The quality of element partition tree influences the computational time of the

solver. Our method allows for generation good quality element partition trees for h-adaptive Finite Element Method. The

paper is concluded with numerical results confirming the quality of generated element partition trees.

Key words: finite element method, multi-frontal solver, hypergraph grammar

1. INTRODUCTION

One of the method of performing numerical sim-

ulations is Finite Element Method (FEM) (Dem-

kowicz 2006, Hughes 2000). This approach allows

for finding the approximation of the solution as the

linear combination of basis functions spread over fi-

nite element mesh.

The adaptive version of FEM allows for auto-

matic control of the accuracy of the numerical solu-

tion over a sequence of computational grids by in-

creasing the number of the basis functions used.

There are several versions of adaptive-FEM algo-

rithms (Babuška & Rheinboldt 1978; Babuška et al.,

1981; Babuška, 1986; Demkowicz et al., 2002) with

different areas of applications (Banaś et al., 2014;

Demkowicz et al., 2006; Niemi et al., 2012).

The coefficients of the linear combination can be

found by solving the corresponding system of linear

equations. To solve the system of linear equations the

multi-frontal solver can be used (Duff & Reid, 1983;

Duff & Reid, 1984). The computational cost of solver

application solving the system of equations depends

hardly on the so-called ordering - the way in which

elimination of rows of a matrix should be performed.

The ordering for Finite Element computations can be

prescribed by means of so-called element partition

tree. The problem of finding optimal element parti-

tion tree as well as optimal ordering for an arbitrary

mesh is NP-complete (Yanakakis, 1981). In the pa-

- 30 -

per, the hypergraph grammar for simultaneous per-

forming of mesh operations and generation of good

quality corresponding element partition tree for 2-

dimmensional meshes with triangular elements is pre-

sented.

We utilize the hypergraph grammar model origi-

nally proposed in (Ślusarczyk & Paszyńska, 2012) for

rectangular grids. In this paper, we extend the model

for more practical triangular elements.

Our hypergraph grammar model is used for sim-

ultaneous mesh generation and adaptation, and the

generation of the element partition trees. The element

partition trees were originally proposed in (Paszyński,

2016). In this paper, we present the hypergraph gram-

mar for automatic generation of the trees. We verify

our approach by numerical experiments performed on

representative grids, including the triangular elements

mesh refined to a point and triangular elements mesh

refined to an edge.

The paper is organized as follows. In the recent

section, the short introduction into Finite Element

Method computation is presented. The next two chap-

ters introduce the hypergraph grammar, Finite Ele-

ment Method and the element partition trees. In the

following chapter the hypergraph productions for

mesh generation and element partition tree generation

are presented. The paper ends with sections including

numerical simulation and summary section.

2. HYPERGRAPH GRAMMAR

Hypergraphs are graphs which consist of nodes

and so-called hyperedges. A hyperedge is an edge

with sequences of nodes assigned to it. The nodes and

hyperedges are labeled with the use of a fixed alpha-

bet. Additionally, to nodes and hyperedges the sets of

attributes are assigned. Figure 1a presents an exem-

plary hypergraph with three nodes labeled by v, three

hyperedges labeled by B and one hyperedge labeled

by I.

Hypegraphs can be created from simpler hyper-

graphs by replacing their subgraphs by new graphs.

This operation is possible if for each hypergraph a se-

quence of its external nodes is specified. These nodes

correspond to target nodes of a replaced subgraphs.

Hypergraphs are generated by applying produc-

tions, which specify the way of subhypergraph re-

placement. A hypergraph production is a pair p = (L,

R), where both L and R are hypergraphs with the same

number of external nodes. In Figure 1b an exemplary

production is presented, where hypergraphs L and R

are hypergraphs with 2 external nodes. The applica-

tion of a production p = (L, R) to a hypergraph H con-

sist of replacing a subhypergraph of H isomorphic

with L by a hypergraph R and replacing nodes of the

removed subhypergraph isomorphic with external

nodes of L by the corresponding external nodes of R.

Figure 1c presents the result of the application of the

productions from figure 1b to the hypergraph from

figure 1a.

Fig. 1. (a) An exemplary hypergraph; (b) An exemplary hyper-

graph production; (c) Graph from figure 1a after applying pro-

duction from figure 1b.

3. FINITE ELEMENT METHOD FOR

TRIANGULAR MESH AND ELEMENT

PARTITION TREE

 In the paper, the method of simultaneous per-

forming of mesh operations and generation of ele-

ment partition tree is presented. The Finite Element

mesh consists of triangular elements. Each triangular

element consists of three vertex nodes, one interior

node and three edge nodes (see figure 2). The solution

is approximated by means of the linear combination

of basis functions spread over finite element nodes:

edges, interior nodes and vertex nodes. In order to ob-

tain more accurate solution, the number of used basis

functions corresponding to finite element nodes can

be increased. In the paper the automatic h-adaptations

is performed - breaking elements into smaller ele-

ments in the areas where more accurate solution is

needed. Figure 3 presents the triangular element from

figure 2 after performing h-adaptation.

Fig. 2. Triangular element

- 31 -

Fig. 3. Triangular element after h-adaptation

In the presented approach, the so called 1-irregu-

larity rule is used to ensure the continuity of the finite

element solution: a finite element can be broken only

once without breaking the large adjacent element.

Figure 4 explains the 1-irregularity rule.

Fig. 4. 1-irregularity rule: enforcing of breaking big adjacent el-

ement before breaking the smaller one.

To find the approximation of the solution as the

linear combination of basis functions spread over fi-

nite element nodes, the system of linear equations

should be solved. In the finite element method com-

putations, the ordering is used to permute the system

of linear equations into the equivalent form, for which

the cost of a solution is lower than for the original

system. In the paper, the algorithm of generation of

element partition tree, which can be transformed into

ordering, is presented. The element partition tree is

defined as a binary tree with leaves associated with

finite elements. The internal nodes of element parti-

tion tree denote sets of elements (sum of elements as-

sociated with their son nodes), and the root contains

the list of all mesh elements. An exemplary four ele-

ment triangular mesh and the corresponding element

partition tree is presented in figure 5.

Fig. 5. (a) An exemplary four element mesh; (b) an element par-

tition tree of the mesh from figure 5a.

4. HYPERGRAPH PRODUCTIONS FOR THE

MESH GENERATION

In the paper, a mesh is represented by means of

hypergraph and mesh transformations are represented

as graph grammar productions. Additionally, produc-

tions allowing for element partition tree generation

are defined.

The hypergraph represents the finite element

mesh in the following way: graph nodes with label v

represent vertices of the mesh, hyperedges labeled by

I represent the element interiors, hyperedges labeled

by B represent the boundary edges, hyperedges la-

beled by F represent the edges of elements. Each hy-

peredge denoting interior of an element has attribute

nr which corresponds to a unique number of the cor-

responding finite element. Additionally the variable

a_nr is defined as the counter of existing elements. It

is increased each time when a new element is added

to the mesh. After adding the first element, a_nr is set

to 0.

An exemplary initial mesh consisting of one ele-

ment, (numbered by 0), the corresponding hyper-

graph, and an element partition tree consisting of one

node, are presented in figure 6.

Fig. 6. (a) An initial mesh; (b) A hypergraph representing an in-

itial one element mesh; (c) an element partition tree of an initial

mesh.

Finite element method computations can be de-

scribed as:

1. mesh generation,

- 32 -

2. calculation of solution and error of each element

(for example defined as determinant of the jaco-

bian of the solution over the element),

3. performing virtual h-adaptation:

a. making a decision about the h-adaptation:

each element, for which error is bigger than

33% of maximal error should be adapted,

we will set attribute h to 1 for elements

which should be adapted, 0 in the other

case,

b. performing propagation of the decision

about refinements: enforcing of refinement

of big elements adjacent to small elements

which should be h-refined. Each element

with h=0, adjacent to the smaller element

which has attribute h=1 get attribute h equal

to 1.

4. performing h-adaptation for elements with

attribute h equal to 1

5. go to point 2 if the accuracy is not good

enough.

In the paper, the productions for mesh generation

and mesh adaptation together with the corresponding

productions for generation of element partition tree

are presented.

Remaining productions, corresponding to calcu-

lation of solution and error of each element as well as

virtual h-adaptation and enforcing 1-irregularuty rule,

are similar to productions defined in (Ślusarczyk &

Paszyńska, 2012) for the case of the mesh consisting

of rectangular elements.

The hypergraph production for adding a new ele-

ment to the mesh is illustrated in figure 7. It generates

one new element interior (labeled I), two new bound-

ary edges (labeled B), one new edge (labeled F), and

three new nodes (labeled v).

Fig. 7. A hypergraph production for adding a new element to the

mesh

The production adding a new element adjacent to

the two existing edges is shown in figure 8. It gener-

ates one new element interior (labeled I), one new

boundary edge (labeled B), two new edges (labeled

F), and three new nodes (labeled v).

Fig. 8. A hypergraph production for adding a new element adja-

cent to the two existing edges.

The hypergraph production for breaking the inte-

rior of an element is illustrated in figure 9. It generates

four new element interiors (labeled by I) and three

new nodes (labeled by w).

Fig. 9. A hypergraph production for breaking the interior of an

element.

The corresponding production, which adds new

nodes to the element partition tree, presented in figure

10, will be executed after adding new elements to the

mesh.

Fig. 10. A production adding new nodes to the element partition

tree.

After breaking the interiors of the elements,

boundary edges as well as shared edges surrounding

by two broken interiors should be broken. To break a

boundary edge means to generate two new boundary

edges (labeled by B) and one new node (labeled by

w). This is done by production presented in figure 11.

- 33 -

Fig. 11. A hypergraph production for breaking the boundary edge

To break a shared edge means to generate two

new edges (labeled by F) and one new node (labeled

by w), as it is illustrated in figure 12.

Fig. 12. A hypergraph production for breaking the shared edge.

After performing h-adaptation, the solution as

well as error of each element are calculated. If the ac-

curacy is insufficient, the virtual adaptation is per-

formed – an element which should be adapted has at-

tribute h set to 1. In order to obtain good element par-

tition tree, some modification of element partition

tree should be performed. The algorithm for element

partition tree generation takes information about the

level of refinement and the adjacency between ele-

ments. Two nodes corresponding to adjacent finite el-

ements with the attribute h = 1 should have the same

parent. This is done by executing production for ele-

ment partition tree modification, presented in figure

13.

Fig. 13. A production for element partition tree modification.

To sum up, the exemplary derivations of the hy-

pergraphs representing finite triangular element

meshes together with the generation of element parti-

tion tree for the case of point singularity and edge sin-

gularity are presented in next two sections.

5. HYPERGRAPH GRAMMAR MODEL FOR

FEM WITH THE MESH WITH SINGLE

POINT SINGULARITY

The FEM computations are started with the one

element mesh with point singularity in the right cor-

ner and the corresponding hypergraph and element

partition tree presented in figure 6. In the case of sin-

gularities, we can refine the mesh in the area, where

the numerical error is large, by applying the produc-

tion breaking mesh interior, as it is illustrated in fig-

ures 14a, 14b, 14c.

Fig. 14. (a) An initial mesh after breaking into four elements; (b)

an element partition tree of the mesh from figure 14a.

Fig. 14. (c) A hypergraph representation of the mesh from figure

14a.

If further adaptation is needed, the element num-

ber three will be broken because it is adjacent to the

point of singularity, as it is illustrated in figures 15a,

15b, 15c.

- 34 -

Fig. 15. (a) Seven elements mesh after breaking element number

three into four elements; (b) an element partition tree of the mesh

from figure 15a.

Fig. 15. (c) A hypergraph representation of the mesh from figure

12a.

6. HYPERGRAPH GRAMMAR MODEL FOR

FEM WITH THE MESH WITH EDGE

SINGULARITIES

The FEM computations are started with the one

element mesh with edge singularity in the bottom

edge and the corresponding hypergraph and element

partition tree presented in figure 6. In the case of sin-

gularities, we perform refinement of the mesh in the

area, where the numerical error is large, by applying

the production breaking mesh interior, as it is illus-

trated in figures 16a, 16b, 16c.

Fig. 16. (a) An initial mesh after breaking into four elements; (b)

an element partition tree of the mesh from figure 16a.

Fig. 16. (c) A hypergraph representation of the mesh from figure

16a.

Two adjacent nodes corresponding to finite ele-

ments with the attribute h = 1 should have the same

parent. This is done by executing production for ele-

ment partition tree modification, presented in figure

16, to the tree from figure 16b, as it is illustrated in

figure. 17.

Fig. 17. An element partition tree after executing production for

element partition tree modification.

In the case further adaptation is needed, the ele-

ments number 1, 2, 3 will be broken, each into four

elements, because they are adjacent to edge singular-

ity, as it is illustrated in figures 18a, 18b, 18c.

Fig. 18. (a) Seven elements mesh after breaking elements number

1, 2, 3.

Fig. 18. (b) An element partition tree of the mesh from figure 18a.

7. TRANSFORMING THE ELEMENT

PARTITION TREE INTO AN ORDERING

FOR MULTI-FRONTAL DIRECT SOLVER

ALGORITHM

The element partition tree can be transformed into

an ordering, which is next sent to the multi-frontal di-

rect solver. The ordering is obtained in the following

way. For each mesh node, we list the finite elements

where this node belongs.

- 35 -

Fig. 18. (c) A hypergraph representation of the mesh from figure

18a.

Next, we browse the element partition tree in

post-order. The leaves of the element partition tree

contain single finite elements, while the internal

nodes of the element partition tree inherit the lists of

elements from their children. When visiting a given

node of the element partition tree, we list in our or-

dering all the mesh nodes, which list of elements con-

tains in the list of elements of the current node of the

element partition tree.

Fig. 19. Left-top panel: Numbering of elements. Right-panel:

Numbering of nodes. Bottom panel: Post-order transition of ele-

ment partition tree.

Let us focus on the example presented in figure

19. When we browse the element partition tree in

post-order, we start from leaf assigned to element 5.

Element 5 has mesh nodes 5, 9, 10, and mesh node

number 9 is assigned to element 5 only. Thus our first

entry in the ordering is mesh node 9. Next, we go to

element 6 (right neighbor in the tree) and this element

has mesh nodes 5, 6, 10, but all of them belongs to

two or three elements, not only to element 6. Then we

go to the parent node in the tree, so our list of ele-

ments is 5 and 6. On the common edge between ele-

ments 5 and 6 there are mesh nodes 5 and 10. Unfor-

tunately, mesh node 5 belongs to elements 5, 6 and 8,

and mesh node 10 belongs to elements 5, 6 and 7. So

we do not update the ordering, since now we have

only elements 5 and 6 processed. Next, we move to

element 7 (no new mesh nodes in the ordering), to

parent tree node with elements 5, 6 and 7, and now

we put to the ordering mesh node 10. Next, we pro-

cess element 8, elements 5, 6, 7, 8 at parent tree node,

and we update the ordering with mesh node 5. We

continue like that with the traveling through the ele-

ment partition tree presented in figure 19, and we end

up with the ordering 9, 10, 5, 6, 11, 12, 13, 7, 8, 1, 2,

3, 4.

8. COMPARISON OF THE NUMBER OF

FLOATING POINT OPERATIONS

In this section, we present the experimental com-

parison on the number of floating-point operations

(FLOPs) of our ordering generated from the element

partition tree obtained from hypergraph grammar al-

gorithm, with the number of FLOPs resulting from

the usage of the nested-dissections algorithm (Liu,

1990) implemented in METIS (METIS) library. Both

orderings are sent to multi-frontal solver MUMPS

solver (MUMPS) executed in sequential mode, and

we record the number of FLOPs reported by

MUMPS. The elimination process presented in this

chapter concerns any elliptic problem, e.g. Hemholtz

equations used for modeling of the wave propagation

process, heat transfer or reaction-diffusion models,

where the sparsity pattern of the matrix follows the

interactions of the mesh nodes where the hierarchical

basis functions are used (Demkowicz, 2006). The

comparison concerns the triangular mesh refined to-

wards one corner and the triangular mesh refined to-

wards one edge.

The experiments concerning the triangular mesh

refined towards one point are presented in figures 20-

21. The experiments concerning the triangular mesh

refined towards one edge are presented in figure 22-

23.

- 36 -

Fig. 20. Comparison of the flops resulting from the execution of

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting

from execution of our hypergraph grammar solver on triangular

mesh h refined towards one point, for linear basis functions.

Fig. 21. Comparison of the flops resulting from the execution of

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting

from execution of our hypergraph grammar solver on triangular

mesh h refined towards one point, for quadratic basis functions.

Fig. 22. Comparison of the flops resulting from the execution of

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting

from execution of our hypergraph grammar solver on triangular

mesh h refined towards one edge, for linear basis functions.

Fig. 23. Comparison of the flops resulting from the execution of

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting

from execution of our hypergraph grammar solver on triangular

mesh h refined towards one edge, for quadratic basis functions.

We can plot the following conclusions from the

experiments:

 Multi-frontal solver executed over triangular

mesh refined towards point singularity delivers

linear computational cost.

 The hypergraph grammar based algorithm out-

performs the nested-dissections algorithm over

the mesh with point singularity. In other words,

the constant (the slope) in front of the linear

computational cost is lower there.

 The multi-frontal solver executed over triangular

mesh refined towards edge singularity delivers

linear computational cost.

 The hypergraph grammar based algorithm out-

perform the nested-dissections algorithm over

the mesh with edge singularities. In other words

the constant (the slope) in front of the linear

computational cost is lower there.

9. LINEAR MEMORY USAGE

In this section, we present the experimental meas-

urements on the number of non-zero entries generated

by our ordering obtained from element partition tree

generated by the hypergraph grammar algorithm. The

memory usage has been measured using the GALOIS

based (Pingali et al., 2011) implementation of the

multi-frontal solver (Paszyńska et al., 2015). This is

because the solver works directly on the element par-

tition tree, and thus our measurements involve all the

stages of the computational process, involving the

browsing of the element partition tree and generation

of the ordering. Measuring the memory usage directly

from MUMPS solver (MUMPS) will skip the part re-

lated to the processing of the element partition tree,

- 37 -

since the MUMPS solver on the interface takes the

ordering generated from the element partition tree.

We execute our experiments on the triangular

mesh refined towards point singularity, and the trian-

gular mesh refined towards edge singularity.

The experiments for the triangular mesh refined

toward one point are presented in figures 24-25, and

the experiments for the triangular mesh refined to-

ward one edge are presented in figures 26-27.

Fig. 24. Linear O(N) number of non-zeros of the solver executed

on 2D triangular mesh h refined towards one point, with hyper-

graph grammar ordering, for linear basis functions.

Fig. 25. Linear O(N) number of non-zeros of the solver on 2D

triangular mesh h refined towards one point, for quadratic basis

functions.

Fig. 26. Linear O(N) number of non-zeros of the solver on 2D

triangular mesh h refined towards one edge, with hypergraph

grammar ordering, for linear basis functions.

We can plot the following conclusions from the

experiments:

 Multi-frontal solver executed over triangular

mesh refined towards one point delivers linear

memory usage,

 Memory usage of the multi-frontal solver with

the ordering obtained from the element partition

trees generated by the hypergraph grammar out-

perform the one obtained from the nested-dissec-

tions algorithm implemented in METIS library,

for the triangular mesh refined towards one point

 Multi-frontal solver executed over triangular

mesh refined towards one edge delivers linear

memory usage,

 Memory usage of the multi-frontal solver with

the ordering obtained from the element partition

trees generated by the hypergraph grammar out-

perform the one obtained from the nested-dissec-

tions algorithm implemented in METIS library,

for the triangular mesh refined towards one edge

Fig. 27. Linear O(N) number of non-zeros of the solver on 2D

triangular mesh h refined towards one edge, with hypergraph

grammar ordering, for quadratic basis functions.

10. DC RESISTIVITY LOGGING

MEASUREMENT SIMULATIONS

In this section we solve 3D direct current (DC)

borehole resistivity measurement simulations in a de-

viated well. Logging instruments move along the

borehole through the formation layers, They are

equipped with several transmitter and receiver elec-

trodes, and measure the voltage induced at the re-

ceiver electrodes at different positions. The measured

voltage is expected estimate the electrical conductiv-

ity of the nearby formation, so the logging instru-

ments are used to estimate the electrical conductivity

of the sub-surface material, with the ultimate objec-

tive of describing oil and gas bearing formations. The

behavior of an instrument is simulated by performing

- 38 -

computer-based simulations in a borehole environ-

ment. The tool with receiver and transmitter elec-

trodes is moving along the trajectory of the well. The

electromagnetic waves generated by the transmitter

electrode are reflected from formation layers and rec-

orded by the receiver electrodes. Of particular interest

are 3D simulations of resistivity measurements in de-

viated wells, where the angle between the borehole

and the formation layers is not equal to 90 degrees A

forward DC problem is formulated in the following

way:

Find   RxuxRu 3: the electrostatic

scalar potential such that

J
x

u

i i









3

1
2

2

 in  (1)

where J is the divergence of the impressed

current, (Pardo et al., 2006) and  represents the

conductivity of the media. We introduce a quasi-cy-

lindrical non-orthogonal system of coordinates

shown. The full derivation is presented in Pardo et al.

(2008a) and Pardo et al. (2008b). The variational for-

mulation, with respect to the electric potential u in the

new system of coordinates is the following:

Find Vu such that:

VvdJvd
vu

n nn









 
 

ζζ ˆˆ
3

1







 (2)

where

   








 


DvdxvvLvV on0tr::
222

 (3)

The electric conductivity of media in the new sys-

tem is equal to JacJacJac
T11:ˆ   , and

JacJJ   :ˆ with Jac being the Jacobian ma-

trix of the change of coordinates from the Cartesian

system of coordinates  321 ,, xxx

 
 321

321

,,

,,






xxx
Jac (4)

We take a Fourier series expansion of the solu-

tion, material and the divergence of the impressed

current (the source) in the 2 direction

   





l

l

lj
l euu 2

31321 ,,,
 (5)

   





m

m

mj
m e 2

31321 ,,,
 (6)

   





l

l

lj
l eJJ 2

31321 ,,,
  (7)

where









2

0
2

2

2

1


deuu
lj

l ,









2

0
2

2

2

1
 

de
mj

m ,









2

0
2

2

2

1


defJ
lj

l and j is the imagi-

nary unit. We introduce symbol lF such that applied

to a scalar function u it produces the lth Fourier modal

coefficient lu , and when applied to a vector or ma-

trix, it produces a vector or matrix of the components

being lth Fourier modal coefficients of the original

vector or matrix components.

We employ the Fourier series expansions to get

the following formulation:

Find
  VuFl 

 such that:

 (8)

The summation in (8) is with respect to
 ml, . We select a mono-modal test func-

tion
2kj

k evv  . We apply the orthogonality of the

Fourier modes in  2L to reduce the problem (8)

into:

Find   VuFl  such that:

(9)

This is because the five Fourier modes used in (9)

are enough to represent the new material coefficients

exactly. We refer to Pardo et al. (2008a) for more de-

tails.

The exemplary computational mesh generated by

the code and processed by our solver is presented in

figure 28. The mesh size is 148256 dofs. Different

colors correspond to different polynomial orders of

approximation from p=1 (blue) to p=8 (pink). Our

- 39 -

solver delivers solution with accuracy 0.001 of the

relative error for a single position of the tool within

14.506 s, while the MUMPS solver requires 27.859 s

for a solution on this single position antenna. The

computations are repeated for consecutive 50 posi-

tions of the logging tool.

Fig. 28. Exemplary mesh generated for the DC resistivity logging

measurement simulations for a single position of antenna.

11. CONCLUSIOS

In this paper, we introduced the hypergraph gram-

mar model for generation and adaptation of two-di-

mensional grids with triangular finite elements. Our

hypergraph grammar productions generating the

mesh are accompanied by the one generating the ele-

ment partition tree. The element partition tree can be

used for guiding the elimination process of the multi-

frontal solver. This can be done either by transferring

the element partition tree directly to the GALOIS

based solver (Paszyńska et. al., 2015) or by post-pro-

cessing the tree in post-order to obtain the ordering

that can be passed to standard multi-frontal solver like

MUMPS (MUMPS). The resulting orderings outper-

form the computations performed with state-of-the-

art nested-dissections ordering, provided by the

METIS (METIS) library incorporated into the

MUMPS solver. The processing element partition

tree and the factorization process for the triangular

grids refined towards point or edge delivers linear

computational cost and memory usage. We also

tested our strategy on industrial process related to

borehole resistivity measurements simulations in de-

viated wells.

ACKNOWLEDGEMENT

This work as supported by National Science Cen-

tre, Poland grant no. DEC-2015/17/B/ST6/01867.

REFERENCES

Babuška, I., Rheinboldt, W., 1978, Error Estimates for

Adaptive Finite Element Computations, SIAM Journal

of Numerical Analysis, 15(4), 736-754.

Babuška, I., Szabo, B. A., Katz, I. N., 1981, The p-Version

of the Finite Element Method, SIAM Journal on Nu-

merical Analysis, 18, 515-545.

Babuška, I., 1986, Accuracy estimates and adaptive refine-

ments in finite element computations, John Wiley and

Sons.

Banaś, K., Chłoń, K., Cybułka, P., Michalik, K., Płaszewski,

P., Siwek, A, 2014, Adaptive finite element modelling

of welding processes, Lecture Notes in Computer Sci-

ence, 8500, 391-406.

Demkowicz, L., Pardo, D. , Rachowicz, W., 2002, 3D hp-

Adaptive Finite Element Package (3Dhp90) Version

2.0. The Ultimate (?) Data Structure for Three-Dimen-

sional Anisotropic hp-Renements, TICAM Report, 2-4.

Demkowicz, L., 2006, Computing with hp-Adaptive Finite

Elements, Vol. I. One and Two Dimensional Elliptic

and Maxwell Problems, Chapman and Hall/Crc Ap-

plied Mathematics and Nonlinear Science.

Demkowicz, L., Kurtz, J., Paszyński, M, Rachowicz, W.,

Zdunek, A., 2006, Computing with hp-Adaptive Finite

Elements, Vol. II. Frontiers: Three Dimensional Ellip-

tic and Maxwell Problems with Applications, Chap-

man and Hall/Crc Applied Mathematics and Nonlinear

Science.

Duff, I. S., Reid, J. K., 1983, The multifrontal solution of

indefinite sparse symmetric linear, ACM Trans. Math.

Softw, 9(3), 302-325.

Duff, I. S., Reid, J. K., 1984, The multifrontal solution of

unsymmetric sets of linear equations, Journal on Sci-

entific and Statistical Computing, 5, 633-641.

Hughues, T., 2000, The Finite Element Method: Linear

Static and Dynamic Finite Element Analysis, Dover

Civil and Mechanical Engineering.

Liu, J., 1990, The role of element partition trees in sparse

factorization, SIAM Journal of Matrix Analysis Appli-

cations, 11(1), 134-172.

METIS (n.d.). Metis - graph partitioning and fill-reducing

matrix ordering, available online at:

http://gl ros.dtc.umn.edu/gkhome/views/metis, ac-

cessed: 1.02.2018

- 40 -

MUMPS (n.d.). Multi-frontal massively parallel sparse di-

rect solver, available online at: http://mumps.en-

seeiht.fr/, accessed: 1.02.2018

Niemi, A., Babuška, I. , Pitkaranta, J., Demkowicz, L/, 2012,

Finite element analysis of Girkmann problem using the

modern hp-version and the classical h-version, Engi-

neering with computers, 28(2), 123-134.

Pardo, D., Demkowicz, L., Torres-Verdin, C., Paszyński,

M., 2006, Simulation of Resistivity Logging-While-

Drilling (LWD) Measurements Using a Self-Adaptive

Goal-Oriented hp-Finite Element Method, SIAM Jour-

nal on Applied Mathematics, 66, 2085-2106.

Pardo, D., Calo, V. M., Torres-Verdin, C., Nam, M. J.,

2008a, Fourier Series Expansion in a Non-Orthogonal

System of Coordinates for Simulation of 3D DC Bore-

hole Resistivity Measurements, Computer Methods in

Applied Mechanics and Engineering, 197(1-3), 1906-

1925.

Pardo, D., Torres-Verdin, C., Nam, M. J., Paszyński, M.,

Calo, V., 2008b, Fourier Series Expansion in a Non-

Orthogonal System of Coordinates for the Simulation

of 3D Alternating Current Borehole Resistivity Meas-

urements, Computer Methods in Applied Mechanics

and Engineering, 197(45-48), 3836-3849.

Paszyńska, A., Paszyński, M., Jopek, K., Woźniak, M.,

Goik, D., Gurgul, P., AbouEisha, P., Moshkov, M.,

Calo, V. M., Lenharth, A., Nguyen, D., Pingali, K.,

2015, Quasi-optimal elemination trees for 2d grids

with singularities, Scientific Programming, 1-18.

Paszyński, M., 2016, Fast Solvers for Mesh Based Compu-

tations, Taylor & Francis, CRC Press.

Pingali, K., Nguyen, D., Kulkarni, K., Burtscher, M., Has-

saan, M., Kaleem, R., Lee, T.-H., Lenharth, A., Ma-

nevich, R., Mendez-Lojo, M., Prountzos, D., Sui, X.,

2011, The tao of parallelism in algorithms, Proceed-

ings of the 32nd ACM SIGPLAN conference on Pro-

gramming language design and implementation, 12-

25.

Ślusarczyk, G., Paszyńska, A., 2012, Hypergraph grammars

in hp-adaptive finite element method, Procedia Com-

puter Science, 18, 1545-1554.

Yannakakis, M., 1981, Computing the minimum fill-in is

np-complete, SIAM Journal on Algebraic Discrete

Methods, 2, 77-79.

ZASTOSOWANIE GRAMATYK

HIPERGRAFOWYCH DO GENERACJI

QUASIOPTYMALNYCH DRZEW PODZIAŁÓW

SIATKI W DWÓCH WYMIARACH

Streszczenie

W artykule przedstawiony został model gramatyk grafowych dla

metody elementów skończonych umożliwiający przyspieszenie

czasu działania symulacji numerycznych. W proponowanym po-

dejściu operacje na siatce elementów skończonych są wykony-

wane równocześnie z operacjami generującymi tak zwane drzewo

podziałów siatki. Drzewo podziałów siatki określa kolejność wy-

konywania operacji na macierzy przez solver rozwiązujący pro-

blem obliczeniowy. Jakość drzewa podziałów siatki wpływa na

czas obliczeniowy solvera. Nasza metoda umożliwia generowa-

nie quasioptymalnych drzew podziałów siatki dla metody ele-

mentów skończonych z h-adaptacją. Artykuł jest zakończony opi-

sem wyników numerycznych potwierdzających jakość wygene-

rowanych drzew podziałów siatki.

Received: May 28, 2018
Received in a revised form: November 19, 2018

Accepted: November 22, 2018

http://mumps.enseeiht.fr/
http://mumps.enseeiht.fr/

