
  ISSN 1641-8581 29-40 

 
Publishing House 

A K A P I T  

 
 

Vol. 18, 2018, No. 1  

 

 

 

USING THE HYPERGRAPH GRAMMAR FOR GENERATION OF QUASI 

OPTIMAL ELEMENT PARTITION TREES IN TWO DIMENSIONS 

 

JAKUB RYZNER1, MACIEJ PASZYŃSKI2, ANNA PASZYŃSKA*3 

 
1Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, 

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland 
 

2Department of Computer Science, AGH University of Science and Technology, 

Al. Mickiewicza 30, 30-059 Krakow, Poland 
 

    3Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University,  

ul. St. Łojasiewicza 11, 30-348 Krakow, Poland  

  

*Corresponding author: e-mail: anna.paszynska@uj.edu.pl  
 

 

Abstract 

 

The paper presents the graph grammar model of Finite Element Method allowing for speeding up performed numerical 

simulations. In the presented approach, the finite element mesh operations are performed together with operations generat-

ing so-called element partition tree. The element partition tree sets the ordering of matrix operations performed by solver 

in order to solve the computational problem. The quality of element partition tree influences the computational time of the 

solver. Our method allows for generation good quality element partition trees for h-adaptive Finite Element Method. The 

paper is concluded with numerical results confirming the quality of generated element partition trees. 
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1. INTRODUCTION 

One of the method of performing numerical sim-

ulations is Finite Element Method (FEM) (Dem-

kowicz 2006, Hughes 2000). This approach allows 

for finding the approximation of the solution as the 

linear combination of basis functions spread over fi-

nite element mesh.  

The adaptive version of FEM allows for auto-

matic control of the accuracy of the numerical solu-

tion over a sequence of computational grids by in-

creasing the number of the basis functions used. 

There are several versions of adaptive-FEM algo-

rithms (Babuška & Rheinboldt 1978; Babuška et al., 

1981; Babuška, 1986; Demkowicz et al., 2002) with 

different areas of applications (Banaś et al., 2014; 

Demkowicz et al., 2006; Niemi et al., 2012).  

The coefficients of the linear combination can be 

found by solving the corresponding system of linear 

equations. To solve the system of linear equations the 

multi-frontal solver can be used (Duff & Reid, 1983; 

Duff & Reid, 1984). The computational cost of solver 

application solving the system of equations depends 

hardly on the so-called ordering - the way in which 

elimination of rows of a matrix should be performed. 

The ordering for Finite Element computations can be 

prescribed by means of so-called element partition 

tree. The problem of finding optimal element parti-

tion tree as well as optimal ordering for an arbitrary 

mesh is NP-complete (Yanakakis, 1981). In the pa-
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per, the hypergraph grammar for simultaneous per-

forming of mesh operations and generation of good 

quality corresponding element partition tree for 2-

dimmensional meshes with triangular elements is pre-

sented.  

We utilize the hypergraph grammar model origi-

nally proposed in (Ślusarczyk & Paszyńska, 2012) for 

rectangular grids. In this paper, we extend the model 

for more practical triangular elements. 

Our hypergraph grammar model is used for sim-

ultaneous mesh generation and adaptation, and the 

generation of the element partition trees. The element 

partition trees were originally proposed in (Paszyński, 

2016). In this paper, we present the hypergraph gram-

mar for automatic generation of the trees. We verify 

our approach by numerical experiments performed on 

representative grids, including the triangular elements 

mesh refined to a point and triangular elements mesh 

refined to an edge. 

The paper is organized as follows. In the recent 

section, the short introduction into Finite Element 

Method computation is presented. The next two chap-

ters introduce the hypergraph grammar, Finite Ele-

ment Method and the element partition trees. In the 

following chapter the hypergraph productions for 

mesh generation and element partition tree generation 

are presented. The paper ends with sections including 

numerical simulation and summary section. 

2. HYPERGRAPH GRAMMAR 

Hypergraphs are graphs which consist of nodes 

and so-called hyperedges. A hyperedge is an edge 

with sequences of nodes assigned to it. The nodes and 

hyperedges are labeled with the use of a fixed alpha-

bet. Additionally, to nodes and hyperedges the sets of 

attributes are assigned. Figure 1a presents an exem-

plary hypergraph with three nodes labeled by v, three 

hyperedges labeled by B and one hyperedge labeled 

by I.  

Hypegraphs can be created from simpler hyper-

graphs by replacing their subgraphs by new graphs. 

This operation is possible if for each hypergraph a se-

quence of its external nodes is specified. These nodes 

correspond to target nodes of a replaced subgraphs.  

Hypergraphs are generated by applying produc-

tions, which specify the way of subhypergraph re-

placement. A hypergraph production is a pair p = (L, 

R), where both L and R are hypergraphs with the same 

number of external nodes. In Figure 1b an exemplary 

production is presented, where hypergraphs L and R 

are hypergraphs with 2 external nodes. The applica-

tion of a production p = (L, R) to a hypergraph H con-

sist of replacing a subhypergraph of H isomorphic 

with L by a hypergraph R and replacing nodes of the 

removed subhypergraph isomorphic with external 

nodes of L by the corresponding external nodes of R. 

Figure 1c presents the result of the application of the 

productions from figure 1b to the hypergraph from 

figure 1a. 

 

 
 

Fig. 1. (a) An exemplary hypergraph; (b) An exemplary hyper-

graph production; (c) Graph from figure 1a after applying pro-

duction from figure 1b. 

3. FINITE ELEMENT METHOD FOR 

TRIANGULAR MESH AND ELEMENT 

PARTITION TREE 

 In the paper, the method of simultaneous per-

forming of mesh operations and generation of ele-

ment partition tree is presented. The Finite Element 

mesh consists of triangular elements. Each triangular 

element consists of three vertex nodes, one interior 

node and three edge nodes (see figure 2). The solution 

is approximated by means of the linear combination 

of basis functions spread over finite element nodes: 

edges, interior nodes and vertex nodes. In order to ob-

tain more accurate solution, the number of used basis 

functions corresponding to finite element nodes can 

be increased. In the paper the automatic h-adaptations 

is performed - breaking elements into smaller ele-

ments in the areas where more accurate solution is 

needed. Figure 3 presents the triangular element from 

figure 2 after performing h-adaptation. 

 

Fig. 2. Triangular element 
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Fig. 3. Triangular element after h-adaptation 

In the presented approach, the so called 1-irregu-

larity rule is used to ensure the continuity of the finite 

element solution: a finite element can be broken only 

once without breaking the large adjacent element. 

Figure 4 explains the 1-irregularity rule. 

 

Fig. 4. 1-irregularity rule: enforcing of breaking big adjacent el-

ement before breaking the smaller one. 

To find the approximation of the solution as the 

linear combination of basis functions spread over fi-

nite element nodes, the system of linear equations 

should be solved. In the finite element method com-

putations, the ordering is used to permute the system 

of linear equations into the equivalent form, for which 

the cost of a solution is lower than for the original 

system.  In the paper, the algorithm of generation of 

element partition tree, which can be transformed into 

ordering, is presented. The element partition tree is 

defined as a binary tree with leaves associated with 

finite elements. The internal nodes of element parti-

tion tree denote sets of elements (sum of elements as-

sociated with their son nodes), and the root contains 

the list of all mesh elements. An exemplary four ele-

ment triangular mesh and the corresponding element 

partition tree is presented in figure 5. 

 

 

Fig. 5. (a) An exemplary four element mesh; (b) an element par-

tition tree of the mesh from figure 5a.  

 

4. HYPERGRAPH PRODUCTIONS FOR THE 

MESH GENERATION 

In the paper, a mesh is represented by means of 

hypergraph and mesh transformations are represented 

as graph grammar productions. Additionally, produc-

tions allowing for element partition tree generation 

are defined.   

The hypergraph represents the finite element 

mesh in the following way: graph nodes with label v 

represent vertices of the mesh, hyperedges labeled by 

I represent the element interiors, hyperedges labeled 

by B represent the boundary edges, hyperedges la-

beled by F represent the edges of elements. Each hy-

peredge denoting interior of an element has attribute 

nr which corresponds to a unique number of the cor-

responding finite element. Additionally the variable 

a_nr is defined as the counter of existing elements. It 

is increased each time when a new element is added 

to the mesh. After adding the first element, a_nr is set 

to 0. 

An exemplary initial mesh consisting of one ele-

ment, (numbered by 0), the corresponding hyper-

graph, and an element partition tree consisting of one 

node, are presented in figure 6. 

 

 

Fig. 6. (a) An initial mesh; (b) A hypergraph representing an in-

itial one element mesh; (c) an element partition tree of an initial 

mesh.  

Finite element method computations can be de-

scribed as: 

1. mesh generation, 
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2. calculation of solution and  error of each element 

(for example defined as determinant of the jaco-

bian of the solution over the element), 

3. performing virtual h-adaptation: 

a. making a decision about the h-adaptation: 

each element, for which error is bigger than 

33% of maximal error should be adapted, 

we will set attribute h to 1 for elements 

which should be adapted, 0 in the other 

case, 

b. performing  propagation of the decision 

about refinements: enforcing of refinement 

of big elements adjacent to small elements 

which should be h-refined. Each element 

with h=0, adjacent to the smaller element 

which has attribute h=1 get attribute h equal 

to 1. 

4. performing h-adaptation for elements with 

attribute h equal to 1 

5. go to point 2 if the accuracy is not good 

enough. 

In the paper, the productions for mesh generation 

and mesh adaptation together with the corresponding 

productions for generation of element partition tree 

are presented. 

Remaining productions, corresponding to calcu-

lation of solution and error of each element as well as 

virtual h-adaptation and enforcing 1-irregularuty rule, 

are similar to productions defined in (Ślusarczyk & 

Paszyńska, 2012) for the case of the mesh consisting 

of rectangular elements. 

The hypergraph production for adding a new ele-

ment to the mesh is illustrated in figure 7. It generates 

one new element interior (labeled I), two new bound-

ary edges (labeled B), one new edge (labeled F), and 

three new nodes (labeled v). 

 

 

Fig. 7. A hypergraph production for adding a new element to the 

mesh 

The production adding a new element adjacent to 

the two existing edges is shown in figure 8. It gener-

ates one new element interior (labeled I), one new 

boundary edge (labeled B), two new edges (labeled 

F), and three new nodes (labeled v).  

 

 

Fig. 8. A hypergraph production for adding a new element adja-

cent to the two existing edges. 

The hypergraph production for breaking the inte-

rior of an element is illustrated in figure 9. It generates 

four new element interiors (labeled by I) and three 

new nodes (labeled by w).  

 

Fig. 9. A hypergraph production for breaking the interior of an 

element. 

The corresponding production, which adds new 

nodes to the element partition tree, presented in figure 

10, will be executed after adding new elements to the 

mesh. 

 

 

Fig. 10. A production adding new nodes to the element partition 

tree. 

After breaking the interiors of the elements, 

boundary edges as well as shared edges surrounding 

by two broken interiors should be broken. To break a 

boundary edge means to generate two new boundary 

edges (labeled by B) and one new node (labeled by 

w). This is done by production presented in figure 11. 
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Fig. 11. A hypergraph production for breaking the boundary edge 

To break a shared edge means to generate two 

new edges (labeled by F) and one new node (labeled 

by w), as it is illustrated in figure 12. 

 

 

Fig. 12. A hypergraph production for breaking the shared edge. 

After performing h-adaptation, the solution as 

well as error of each element are calculated. If the ac-

curacy is insufficient, the virtual adaptation is per-

formed – an element which should be adapted has at-

tribute h set to 1. In order to obtain good element par-

tition tree, some modification of element partition 

tree should be performed.  The algorithm for element 

partition tree generation takes information about the 

level of refinement and the adjacency between ele-

ments. Two nodes corresponding to adjacent finite el-

ements with the attribute h = 1 should have the same 

parent. This is done by executing production for ele-

ment partition tree modification, presented in figure 

13. 

 

Fig. 13. A production for element partition tree modification. 

To sum up, the exemplary derivations of the hy-

pergraphs representing finite triangular element 

meshes together with the generation of element parti-

tion tree for the case of point singularity and edge sin-

gularity are presented in next two sections.  

5. HYPERGRAPH GRAMMAR MODEL FOR 

FEM WITH THE MESH WITH SINGLE 

POINT SINGULARITY 

The FEM computations are started with the one 

element mesh with point singularity in the right cor-

ner and the corresponding hypergraph and element 

partition tree presented in figure 6. In the case of sin-

gularities, we can refine the mesh in the area, where 

the numerical error is large, by applying the produc-

tion breaking mesh interior, as it is illustrated in fig-

ures 14a, 14b, 14c.  

 

Fig. 14. (a) An initial mesh after breaking into four elements; (b) 

an element partition tree of the mesh from figure 14a.  

 

Fig. 14. (c) A hypergraph representation of the mesh from figure 

14a. 

If further adaptation is needed, the element num-

ber three will be broken because it is adjacent to the 

point of singularity, as it is illustrated in figures 15a, 

15b, 15c. 
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Fig. 15. (a) Seven elements mesh after breaking element number 

three into four elements; (b) an element partition tree of the mesh 

from figure 15a.  

 

Fig. 15. (c) A hypergraph representation of the mesh from figure 

12a. 

6. HYPERGRAPH GRAMMAR MODEL FOR 

FEM WITH THE MESH WITH EDGE 

SINGULARITIES 

The FEM computations are started with the one 

element mesh with edge singularity in the bottom 

edge and the corresponding hypergraph and element 

partition tree presented in figure 6. In the case of sin-

gularities, we perform refinement of the mesh in the 

area, where the numerical error is large, by applying 

the production breaking mesh interior, as it is illus-

trated in figures 16a, 16b, 16c. 

 

 

Fig. 16. (a) An initial mesh after breaking into four elements; (b) 

an element partition tree of the mesh from figure 16a. 

 

Fig. 16. (c) A hypergraph representation of the mesh from figure 

16a. 

Two adjacent nodes corresponding to finite ele-

ments with the attribute h = 1 should have the same 

parent. This is done by executing production for ele-

ment partition tree modification, presented in figure 

16, to the tree from figure 16b, as it is illustrated in 

figure. 17. 

 

Fig. 17. An element partition tree after executing production for 

element partition tree modification. 

In the case further adaptation is needed, the ele-

ments number 1, 2, 3 will be broken, each into four 

elements, because they are adjacent to edge singular-

ity, as it is illustrated in figures 18a, 18b, 18c. 

 

Fig. 18. (a) Seven elements mesh after breaking elements number 

1, 2, 3. 

 

Fig. 18. (b) An element partition tree of the mesh from figure 18a. 

7. TRANSFORMING THE ELEMENT 

PARTITION TREE INTO AN ORDERING 

FOR MULTI-FRONTAL DIRECT SOLVER 

ALGORITHM 

The element partition tree can be transformed into 

an ordering, which is next sent to the multi-frontal di-

rect solver. The ordering is obtained in the following 

way. For each mesh node, we list the finite elements 

where this node belongs. 
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Fig. 18. (c) A hypergraph representation of the mesh from figure 

18a. 

Next, we browse the element partition tree in 

post-order. The leaves of the element partition tree 

contain single finite elements, while the internal 

nodes of the element partition tree inherit the lists of 

elements from their children. When visiting a given 

node of the element partition tree, we list in our or-

dering all the mesh nodes, which list of elements con-

tains in the list of elements of the current node of the 

element partition tree.  

 

Fig. 19. Left-top panel: Numbering of elements. Right-panel: 

Numbering of nodes. Bottom panel: Post-order transition of ele-

ment partition tree. 

Let us focus on the example presented in figure 

19. When we browse the element partition tree in 

post-order, we start from leaf assigned to element 5. 

Element 5 has mesh nodes 5, 9, 10, and mesh node 

number 9 is assigned to element 5 only. Thus our first 

entry in the ordering is mesh node 9. Next, we go to 

element 6 (right neighbor in the tree) and this element 

has mesh nodes 5, 6, 10, but all of them belongs to 

two or three elements, not only to element 6. Then we 

go to the parent node in the tree, so our list of ele-

ments is 5 and 6. On the common edge between ele-

ments 5 and 6 there are mesh nodes 5 and 10. Unfor-

tunately, mesh node 5 belongs to elements 5, 6 and 8, 

and mesh node 10 belongs to elements 5, 6 and 7. So 

we do not update the ordering, since now we have 

only elements 5 and 6 processed. Next, we move to 

element 7 (no new mesh nodes in the ordering), to 

parent tree node with elements 5, 6 and 7, and now 

we put to the ordering mesh node 10. Next, we pro-

cess element 8, elements 5, 6, 7, 8 at parent tree node, 

and we update the ordering with mesh node 5. We 

continue like that with the traveling through the ele-

ment partition tree presented in figure 19, and we end 

up with the ordering 9, 10, 5, 6, 11, 12, 13, 7, 8, 1, 2, 

3, 4. 

8. COMPARISON OF THE NUMBER OF 

FLOATING POINT OPERATIONS 

In this section, we present the experimental com-

parison on the number of floating-point operations 

(FLOPs) of our ordering generated from the element 

partition tree obtained from hypergraph grammar al-

gorithm, with the number of FLOPs resulting from 

the usage of the nested-dissections algorithm (Liu, 

1990) implemented in METIS (METIS) library. Both 

orderings are sent to multi-frontal solver MUMPS 

solver (MUMPS) executed in sequential mode, and 

we record the number of FLOPs reported by 

MUMPS. The elimination process presented in this 

chapter concerns any elliptic problem, e.g. Hemholtz 

equations used for modeling of the wave propagation 

process, heat transfer or reaction-diffusion models, 

where the sparsity pattern of the matrix follows the 

interactions of the mesh nodes where the hierarchical 

basis functions are used (Demkowicz, 2006). The 

comparison concerns the triangular mesh refined to-

wards one corner and the triangular mesh refined to-

wards one edge. 

The experiments concerning the triangular mesh 

refined towards one point are presented in figures 20-

21. The experiments concerning the triangular mesh 

refined towards one edge are presented in figure 22-

23. 
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Fig. 20. Comparison of the flops resulting from the execution of 

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting 

from execution of our hypergraph grammar solver on triangular 

mesh h refined towards one point, for linear basis functions. 

Fig. 21. Comparison of the flops resulting from the execution of 

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting 

from execution of our hypergraph grammar solver on triangular 

mesh h refined towards one point, for quadratic basis functions. 

 

 

Fig. 22. Comparison of the flops resulting from the execution of 

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting 

from execution of our hypergraph grammar solver on triangular 

mesh h refined towards one edge, for linear basis functions. 

 

Fig. 23. Comparison of the flops resulting from the execution of 

the multi-frontal MUMPS solver with nested-dissections algo-

rithm from METIS library (experimental flops) to flops resulting 

from execution of our hypergraph grammar solver on triangular 

mesh h refined towards one edge, for quadratic basis functions. 

We can plot the following conclusions from the 

experiments: 

 Multi-frontal solver executed over triangular 

mesh refined towards point singularity delivers 

linear computational cost. 

 The hypergraph grammar based algorithm out-

performs the nested-dissections algorithm over 

the mesh with point singularity. In other words, 

the constant (the slope) in front of the linear 

computational cost is lower there. 

 The multi-frontal solver executed over triangular 

mesh refined towards edge singularity delivers 

linear computational cost. 

 The hypergraph grammar based algorithm out-

perform the nested-dissections algorithm over 

the mesh with edge singularities. In other words 

the constant (the slope) in front of the linear 

computational cost is lower there. 

9. LINEAR MEMORY USAGE 

In this section, we present the experimental meas-

urements on the number of non-zero entries generated 

by our ordering obtained from element partition tree 

generated by the hypergraph grammar algorithm. The 

memory usage has been measured using the GALOIS 

based (Pingali et al., 2011) implementation of the 

multi-frontal solver (Paszyńska et al., 2015). This is 

because the solver works directly on the element par-

tition tree, and thus our measurements involve all the 

stages of the computational process, involving the 

browsing of the element partition tree and generation 

of the ordering. Measuring the memory usage directly 

from MUMPS solver (MUMPS) will skip the part re-

lated to the processing of the element partition tree, 
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since the MUMPS solver on the interface takes the 

ordering generated from the element partition tree. 

We execute our experiments on the triangular 

mesh refined towards point singularity, and the trian-

gular mesh refined towards edge singularity.  

The experiments for the triangular mesh refined 

toward one point are presented in figures 24-25, and 

the experiments for the triangular mesh refined to-

ward one edge are presented in figures 26-27. 

 

 

Fig. 24. Linear O(N) number of non-zeros of the solver executed 

on 2D triangular mesh h refined towards one point, with hyper-

graph grammar ordering, for linear basis functions. 

 

Fig. 25. Linear O(N) number of non-zeros of the solver on 2D 

triangular mesh h refined towards one point, for quadratic basis 

functions. 

 

Fig. 26. Linear O(N) number of non-zeros of the solver on 2D 

triangular mesh h refined towards one edge, with hypergraph 

grammar ordering, for linear basis functions.  

We can plot the following conclusions from the 

experiments: 

 Multi-frontal solver executed over triangular 

mesh refined towards one point delivers linear 

memory usage,  

 Memory usage of the multi-frontal solver with 

the ordering obtained from the element partition 

trees generated by the hypergraph grammar out-

perform the one obtained from the nested-dissec-

tions algorithm implemented in METIS library, 

for the triangular mesh refined towards one point  

 Multi-frontal solver executed over triangular 

mesh refined towards one edge delivers linear 

memory usage,  

 Memory usage of the multi-frontal solver with 

the ordering obtained from the element partition 

trees generated by the hypergraph grammar out-

perform the one obtained from the nested-dissec-

tions algorithm implemented in METIS library, 

for the triangular mesh refined towards one edge 

 

 

Fig. 27. Linear O(N) number of non-zeros of the solver on 2D 

triangular mesh h refined towards one edge, with hypergraph 

grammar ordering, for quadratic basis functions.  

10. DC RESISTIVITY LOGGING 

MEASUREMENT SIMULATIONS 

In this section we solve 3D direct current (DC) 

borehole resistivity measurement simulations in a de-

viated well. Logging instruments move along the 

borehole through the formation layers, They are 

equipped with several transmitter and receiver elec-

trodes, and measure the voltage induced at the re-

ceiver electrodes at different positions. The measured 

voltage is expected estimate the electrical conductiv-

ity of the nearby formation, so the logging instru-

ments are used to estimate the electrical conductivity 

of the sub-surface material, with the ultimate objec-

tive of describing oil and gas bearing formations. The 

behavior of an instrument is simulated by performing 
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computer-based simulations in a borehole environ-

ment. The tool with receiver and transmitter elec-

trodes is moving along the trajectory of the well. The 

electromagnetic waves generated by the transmitter 

electrode are reflected from formation layers and rec-

orded by the receiver electrodes. Of particular interest 

are 3D simulations of resistivity measurements in de-

viated wells, where the angle between the borehole 

and the formation layers is not equal to 90 degrees A 

forward DC problem is formulated in the following 

way:  

Find   RxuxRu 3:  the electrostatic 

scalar potential such that  

J
x

u

i i
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where J  is the divergence of the impressed 

current, (Pardo et al., 2006) and  represents the 

conductivity of the media.  We introduce a quasi-cy-

lindrical non-orthogonal system of coordinates 

shown. The full derivation is presented in Pardo et al. 

(2008a) and Pardo et al. (2008b). The variational for-

mulation, with respect to the electric potential u in the 

new system of coordinates is the following:  

Find Vu  such that:  
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The electric conductivity of media in the new sys-

tem is equal to JacJacJac
T11:ˆ   , and 

JacJJ   :ˆ  with Jac  being the Jacobian ma-
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We take a Fourier series expansion of the solu-

tion, material and the divergence of the impressed 

current (the source) in the 2  direction  
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l  and j is the imagi-

nary unit. We introduce symbol lF  such that applied 

to a scalar function u it produces the lth Fourier modal 

coefficient lu , and when applied to a vector or ma-

trix, it produces a vector or matrix of the components 

being lth Fourier modal coefficients of the original 

vector or matrix components.   

We employ the Fourier series expansions to get 

the following formulation:  

Find 
  VuFl 

 such that: 

 (8) 

 
   

The summation in (8) is with respect to 
 ml, . We select a mono-modal test func-

tion 
2kj

k evv  . We apply the orthogonality of the 

Fourier modes in  2L  to reduce the problem (8) 

into: 

Find   VuFl   such that:  

(9) 

 
This is because the five Fourier modes used in (9) 

are enough to represent the new material coefficients 

exactly. We refer to Pardo et al. (2008a) for more de-

tails. 

The exemplary computational mesh generated by 

the code and processed by our solver is presented in 

figure 28. The mesh size is 148256 dofs. Different 

colors correspond to different polynomial orders of 

approximation from p=1 (blue) to p=8 (pink). Our 
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solver delivers solution with accuracy 0.001 of the 

relative error for a single position of the tool within 

14.506 s, while the MUMPS solver requires 27.859 s 

for a solution on this single position antenna. The 

computations are repeated for consecutive 50 posi-

tions of the logging tool. 

 

Fig. 28. Exemplary mesh generated for the DC resistivity logging 

measurement simulations for a single position of antenna. 

11. CONCLUSIOS 

In this paper, we introduced the hypergraph gram-

mar model for generation and adaptation of two-di-

mensional grids with triangular finite elements. Our 

hypergraph grammar productions generating the 

mesh are accompanied by the one generating the ele-

ment partition tree. The element partition tree can be 

used for guiding the elimination process of the multi-

frontal solver. This can be done either by transferring 

the element partition tree directly to the GALOIS 

based solver (Paszyńska et. al., 2015) or by post-pro-

cessing the tree in post-order to obtain the ordering 

that can be passed to standard multi-frontal solver like 

MUMPS (MUMPS). The resulting orderings outper-

form the computations performed with state-of-the-

art nested-dissections ordering, provided by the 

METIS (METIS) library incorporated into the 

MUMPS solver. The processing element partition 

tree and the factorization process for the triangular 

grids refined towards point or edge delivers linear 

computational cost and memory usage. We also 

tested our strategy on industrial process related to 

borehole resistivity measurements simulations in de-

viated wells.  
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ZASTOSOWANIE GRAMATYK 

HIPERGRAFOWYCH DO GENERACJI 

QUASIOPTYMALNYCH DRZEW PODZIAŁÓW 

SIATKI W DWÓCH WYMIARACH 

 

Streszczenie 

W artykule przedstawiony został model gramatyk grafowych dla 

metody elementów skończonych umożliwiający przyspieszenie 

czasu działania symulacji numerycznych. W proponowanym po-

dejściu operacje na siatce elementów skończonych są wykony-

wane równocześnie z operacjami generującymi tak zwane drzewo 

podziałów siatki. Drzewo podziałów siatki określa kolejność wy-

konywania operacji na macierzy przez solver rozwiązujący pro-

blem obliczeniowy. Jakość drzewa podziałów siatki wpływa na 

czas obliczeniowy solvera. Nasza metoda umożliwia generowa-

nie quasioptymalnych drzew podziałów siatki dla metody ele-

mentów skończonych z h-adaptacją. Artykuł jest zakończony opi-

sem wyników numerycznych potwierdzających jakość wygene-

rowanych drzew podziałów siatki.  
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