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Abstract 

 

In the paper the mathematical model of the inverse one-dimensional problem of binary alloy solidification, with the 

material shrinkage phenomenon taken into account, is defined. The process is described by using the model of 

solidification in the temperature interval, whereas the shrinkage of material is modeled basing on the mass balance 

equation. The inverse problem consists in reconstruction of the heat transfer coefficient on the boundary of the casting 

mould separating the cast from the environment. Lack of this data is compensated by the measurements of temperature in 

the control point located inside the mould. The method of solving the investigated problem is based on two procedures: 

the implicit scheme of finite difference method supplemented by the procedure of correcting the field of temperature in 

the vicinity of liquidus and solidus curves and the immune optimization algorithm IRM. 
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1. INTRODUCTION 

The problems describing the physical, technical 

or engineering processes can be divided into two 

general groups: direct problems (Sczygiol & Dyja, 

2007; Sowa & Bokota, 2007; Piekarska et al., 2011), 

when all the input data are given for the start, and 

the inverse problems, when some part of the input 

data is unknown, so the goal of such task is to 

reconstruct the missing elements on the basis of 

some additional information concerning the effects 

caused by the process (Alifanov, 1994; Beck & 

Blackwell, 1988). Solving the inverse problem is 

much more difficult than solving the direct problem, 

but in return we get the possibility of determining 

the values of coefficients which cannot be directly 

measured or designing the problems in which the 

initial or boundary conditions or the values of 

parameters are selected such that they ensure 

a required run of the process. The inverse problem 

provides a very useful tool for analyses of various 

processes (see for example Hojny & Głowacki, 

2009; Szeliga et al., 2004, Talar et al., 2002; Telejko 

& Malinowski, 2004). 

An object of this research is the binary alloy 

solidification process including the phenomenon of 

creating the air gap between the cast and the mould. 

This phenomenon is the result of the metal shrinkage 

caused by the different densities of the liquid and 

solid states. This kind of problem was already 

investigated by some authors. For example, Nawrat 

et al. (2009) determined the heat conduction 

coefficient of the gap on the basis of temperature 

measurements in the crystallizer walls. They 

investigated the heat resistance of the air gap created 

between the ingot and crystallizer in the continuous 

casting process and for modeling this process they 

used the Stefan problem. Thermal resistance of the 
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gap between the mould, or the crystallizer, and the 

ingot was also determined in other papers 

(Shestakov et al., 1994) as well as the interfacial 

heat transfer coefficient between the form and the 

cast (Cheung et al., 2009; O’Mahoney & Browne, 

2000). Matlak and Słota (2015) considered the 

shrinkage of metal occurring in the pure metal 

solidification modeled by means of the one-

dimensional Stefan problem, whereas authors of the 

current paper (Hetmaniok et al., 2017) tested the 

solution technique for solving the direct problem of 

the alloy solidifying within the casting mould with 

the air gap effect and they described the examined 

process by means of the solidification in the 

temperature interval. 

In this paper we investigate the 

mathematical model of the inverse one-

dimensional problem of the binary alloy 

solidification, with the material shrinkage 

phenomenon taken into account. The process is 

described by using the model of solidification in 

the temperature interval. In this case we deal 

with the heat conduction equation with the 

source element enclosed including the latent 

heat of fusion and the volumetric contribution of 

the solid phase (Majchrzak & Mochnacki, 1995; 

Mochnacki & Suchy, 1995). The shrinkage of 

metal is modeled basing on the mass balance 

equation. The inverse problem consists in 

reconstruction of the heat transfer coefficient on 

the boundary of the casting mould separating 

the cast from the environment. Lack of this data 

is compensated by the measurements of 

temperature in the control point located in the 

middle of the mould. For solving the inverse 

problem one of the optimization algorithms, the 

IRM algorithm, developed on the basis of the 

immune system functioning in the mammal 

bodies is used (Bersini &Varela, 1991; 

Hetmaniok et al., 2012). The elaboration 

contains the results of numerical research 

executed for various levels of input data 

perturbations and for measurements generated 

in series with the constant, but different for 

every series, time step. Authors of the current 

paper discussed already the similar approach, 

but by applying the Artificial Bee Colony 

algorithm (Zielonka et al., 2017). Encouraged 

by the promising results we decided to use in 

this approach another algorithm based on the 

biological inspirations, that is the immune 

algorithm, to check how this optimization 

procedure deals with such task. In general, the 

artificial intelligence algorithms inspired by 

nature are widely applied in solving the 

problems requiring optimization because of 

their effectiveness connected with relative 

simplicity and easiness of implementation. 

Since we plan in future to solve more advanced 

problems, concerning the identification of more 

parameters in two or three-dimensional 

domains, we test the usefulness of biologically 

inspired algorithms in solving the problems of 

considered kind.       

2. GOVERNING EQUATIONS 

In figure 1 there is presented the solidifying 

plate of thickness )(td , width h  and height l   

( htd )(  and ltd )( ). Region 

)},0()),(,0(:),{( = tttdxtx  of solidifying 

material is divided into three subregions: occupied 

by the liquid phase, mushy zone (two-phase zone 

combining liquid and solid phases) and solid phase. 

As figure 1 shows, the region   of the cast is 

bounded by the region

)},0(),,(:),{( 0

= ttbdxtxm  of the casting 

mould and both regions are separated by the air gap 

created and increased during the solidification 

process. So, at the begining of solidification 

0)0( dd =  and next, while the solidification 

process goes on, the boundary )(td  of the cast 

moves by forming the air gap. 

 

 

Fig. 1. Region of the problem 

The distribution of temperature in region   is 

described by the following heat conduction 

equation 
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where c ,   and   denote the specific heat, 

mass density and thermal conductivity 

coefficient, respectively, xv  describes the 

velocity vector, L  is the latent heat of 

solidification, sf  means  the volumetric solid 

state fraction and, finally, T  is the temperature, 

t  describes the time and x  refers to the spatial 

variable. In this approach we neglect the natural 

convection in the liquid phase, as well as the 

strain energy of the mushy zone and since the 

volumetric solid state fraction sf  depends on 

the temperature we can write this function in the 

following way 
 

.
t
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t

f ss
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    (2)                                                                            

 

Including the above relation into equation (1) 

we get the equation describing the heat 

conduction in the homogeneous region 

including the solid phase, mushy zone and 

liquid phase, that is for all ),( tx :  
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where 𝐶 = 𝑐 − 𝐿
𝜕𝑓𝑠

𝜕𝑇
 defines the substantial 

thermal capacity. Function sf  can be the linear 

function depending on temperature (Majchrzak & 

Mochnacki, 1995; Mochnacki & Suchy, 1995) 

in the mushy zone. Thus, since it must be 

fulfilled that 0)( =Ls Tf  and 1)( =Ss Tf , where 

LT  and ST  denote the liquidus and solidus 

temperatures, we assume the following form of 

function describing the volumetric solid state 

fraction  
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for ].,[ SL TTT  Taking into account function (4), 

the substantial thermal capacity is defined in 

dependence on temperature as follows 
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where lc , mzc  and sc  denote the specific heat 

of liquid phase, mushy zone and solid phase, 

respectively. The thermal conductivity 

coefficient and the density, occurring in 

equation (3), depend also on temperature, so we 

have  
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Since the mushy zone is a two-phase zone in 

which both phases, liquid and solid, coexist, we 

express the specific heat, thermal conductivity 

coefficient and density in the mushy zone as 

depending on the volumetric solid state fraction 

sf  in the following way  

,)1( ssslmz fcfcc +−=       

ssslmz ff  +−= )1(         and        

.)1( ssslmz ff  +−=               (7)

    

In mould region m  the temperature is distributed 

according to the following heat conduction 

equation 
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where mT   denotes the temperature of the 

casting mould and mc , m , m are the specific 

heat, mass density and thermal conductivity 

coefficient of the material, the casting mould is 

made of. 

       Equations (3) and (8) are completed by the 

following initial and boundary conditions. At 

the beginning of the process we have 

 

)()0,( 0 xTxT =  for    ],0[ 0dx        

and      

)()0,( 0, xTxT mm =  for   ],,[ 0 bdx    (9)              

 

where LTxT )(0  because for 0=t  the cast is in 

the liquid state. To satisfy the consistency condition 

we assume that )()( 00,00 dTdT m= . Moreover we 

have 
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0
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where   denotes the heat transfer coefficient 

and T  describes the temperature of 

environment. In contact zone of the cast and the 

casting mould we assume the fourth kind 

boundary condition in two forms: at the 

beginning of the process there is a perfect 

contact between the cast and the mould 
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and next, when the air gap between the cast and 

the mould starts to occur, we assume the 

condition 
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where 
g

tdd
R



)(0 −=  describes the thermal 

resistance with g  denoting the thermal 

conductivity coefficient of the air gap. Width 

)(td  of the cast depends on time and to 

determine )(td  we use the mass balance 

equation 

 

,0 smzl mmmm ++=                                          (13)                                                                                  

 

according to which the total mass of the material 

0m  (constant in the modeled solidification 

process) must be equal to the sum of masses of 

the material in the liquid, intermediate (mushy 

zone) and solid states. Using the notation from 

figure 1, equation (13) can be formulated in the 

following form 
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Hence we get 
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
 −−−+=  (15)                                                                            

Dependence on time is expressed here by the 

values l  and s  denoting the locations of LT  

and ST , that is the boundaries of the mushy zone 

changing in time.    

Before the solid state occurs in the process, 

only the liquid state and mushy zone are taken 

into account, so the mass balance equation has 

the form 

 

.0 mzl mmm +=                                  (16)                                             

                                                                             

According to the notation from figure 1, equation 

(16) can be presented in the form  

 

hltdhlhld lmzlll ))((0  −+=   (17)                                                                                   

 

and hence, the width )(td  before occurance of the 

solid state is expressed by formula 

).()( 0 l

mz

l

l dtd 



 −+=                               (18)    

In the above equations there is one 

unknown element: the heat transfer coefficient 
  of the casting mould material included in one 

of the boundary conditions (10). Thus, the 

considered inverse problem consists in 

reconstruction of this coefficient and in 

determination of the temperature distribution in 

the entire investigated region, that is in the cast  

and in the mould, on the ground of the 

measurements of temperature read from the 

sensor located in the middle of the mould as it is 

presented in figure 1.   

        For the known value of coefficient   the 

problem turns into the direct solidification problem 

with the air gap created between the cast and the 

mould. Thus, by solving this problem we are able 

to calculate the values of temperature 

),(, imim txTT =  in the middle point x  of the 

mould, where the thermocouple is located, 

corresponding with the assumed form of 

coefficient  . Then, by using the measurements 

of temperature iU , for Ni ,...,1= , we define the 

functional 

                                                                                 


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N

i

iim UTJ
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representing the error of approximate solution imT , . 

On the way of minimizing this functional we select 

such value of the heat transfer coefficient   that 

the reconstructed values of temperature are the 
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closest as possible to the measured values. The 

method of solution is based on two procedures: 

one procedure serves for solving the direct 

problem and the second one is used for 

minimizing functional (19).  

 

 

 

3. SOLUTION OF THE DIRECT PROBLEM 

To solve the direct problem, associated to the 

investigated inverse problem, we use the implicit 

scheme of the finite difference method 

supplemented by the procedure of correcting the 

field of temperature in the vicinity of liquidus and 

solidus curves (Majchrzak & Mochnacki, 1995; 

Mochnacki & Suchy, 1995). To apply this method 

we impose two different meshes: one (with the 

nodes located more densely) in the cast region and 

another one in the mould region. The last node of the 

cast region is always located at point )(td , therefore, 

when the air gap starts to grow in result of solidification, 

the last node of the cast region moves.  

The idea of the used method assumes the 

correction of the calculated value of temperature in 

the given node in case of the phase change. Let us 

suppose that node ix  in moment pt  is in the liquid 

phase, which means that its temperature satisfies the 

condition L

p

i TT  . To calculate the value of 

temperature in the next step 1+pt  we use then the 

parameters appropriate to the liquid phase. If the 

calculated new temperature satsifies still the 

condition L

p

i TT +1
, it means that the phase did not 

change in node ix  and the temperature has the 

correct value. In opposite case, that is when 

],(1

LS

p

i TTT +
, the calculated value of temperature 

must be corrected, because apparently the phase 

changed within the period of time pp ttt −= +1 , so 

for part of this time the values of parameters 

adequate to new phase – mushy zone - should be 

used for calculations in node ix . 

To determine this correction we use the energy 

balance relation for the control volume iV  with 

central point ix . The decrease of temperature from 

value 
p

iT  to value 
1+p

iT  causes the following 

change of the enthalpy          
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where lC  and l  describe the substantial thermal 

capacity and density of the liquid phase. The 

decrease of temperature can be presented as the 

sum of two processes: cooling from value 
p

iT  to 

the liquidus temperature LT  and from liquidus 

temperature LT  to the required value 
1~ +p

iT : 
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where mzC  and mz  describe the substantial 

thermal capacity and density of the mushy zone. 

Thus, from equations (20)-(21) we derive the 

formula for the corrected value of temperature in 

node ix : 
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In similar way we receive the formula for the 

corrected value of temperature in case when 

node ix  changes the phase from the mushy zone to 

the solid phase 
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with sC  and s  denoting the substantial thermal 

capacity and density of the solid phase. In our 

approach we do not consider the change of 

temperature in node ix  from the value L

p

i TT   to 

the value S

p

i TT +1
. We select the time step so that 

we can avoid such situation.    

After determining the value of temperature in 

node ix  we calculate the contribution of the solid 

phase in this node by using formula (4) and the 

locations of points l  and s  bounding the 

intermediate (mushy) zone. To determine the 

location of point l  we need to find the nodes 1−ix  

and ix  for which L

p

i TT +

−

1

1  and L

p

i TT +1
, 

determine the line going through points 
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which the line takes the value LT . In this way we 
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Similarly, only now by taking the nodes 1−jx  and 

jx  for which 
S

p

j TT +

−

1

1
 and 

S

p

j TT +1 , we get 

 

)( 1

111

1

1

1

+

−++
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− −
−

−
+= p

jSp

j

p

j

jj

js TT
TT

xx
x .      (25)                                                                                   

One step of calculations finishes the 

determination of the cast width )(td  with the aid 

of formula (15) or (18).   

4. IMMUNE RECRUITMENT MECHANISM 

Minimization of functional (19) is realized 

by using the Immune Recruitment Mechanism, 

that is the immune optimization algorithm 

inspired by the mechanisms functioning in the 

immunological systems of living organisms 

(Bersini & Varela, 1991; Hetmaniok et al., 

2012). The main elements participating in the 

defensive reaction of the system are the white 

blood cells, called the lymphocytes. In presence 

of the dangerous antigens the lymphocytes, 

equipped by the receptors recognizing this 

antigen, activate and connect with the antigens. 

The IRM algorithm simulates the mechanism of 

removing the ineffective cells and their clones 

with simultaneous recruitment of the new cells. 

Therefore in solving an optimization problem 

the sought optimal solution plays the role of 

antigen, the values of objective function in 

obtained partial solutions are considered as the 

antibodies and the algorithms works by 

minimizing the difference between the pattern 

(antigen) and the antibody. 

To initiate the IRM algorithm the following 

steps must be executed: 

1. Data initiation: 

)(xJ  – minimized function, 

Dxx n = ),...,( 1x ; 

N  – number of individuals in one 

population; 

],[ uplo xx  – range of j−th variable of 

individual x ; 

  - mutation parameter; 

  - narrowing parameter; 

I – number of iterations. 

2. Random generation of the initial population 

of individuals x . 

3. Sorting of obtained vectors x with 

respect to the increasing values of 

objective function J . Position ranki  of 

the vector denotes its rating position. 

The main part of the IRM algorithm consists of 

the following steps: 

 

1. Determination of the bonding matrix  
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where ),( jid xx  denotes the distance 

between individuals i
x  and j

x , and 

),( worstbestdd xx=
. 

2. Calculation of the stimulation level for 

each lymphocyte 

 


=

=
N

i

i

ijj Jm
1

)(x , 

 

where N  denotes the fixed (decreasing 

in time) part of the best lymphocytes. 

3. Determination of the threshold value 

 


=

=
N

i

iJ
N 1

)(
1

x . 

 

4. Each individual for which  i  is 

mutated according to formula 

 

,,...,1,ˆ njxxx i

j

i

j

i

j

i

j =+=     

 

where ],[  −i

j
 and is randomly 

generated.  In case when the solution is 

not improved in the assumed number of 

successive iterations, the new value of 

mutation parameter, equal to   , is 

taken. 

5. New lymphocyte x̂  is added to the 

population and the worst one is 

removed. 

6. Points 1-5 are repeated I times. 

5. NUMERICAL EXAMPLE 

 To illustrate the investigated procedure we show 

the solution of the following problem. We consider 
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the cast of length 0.4 m (
4.00 =d

) solidifying 

within the mould of length 0.2 m ( 6.0=b ). The 

parameters describing the process take the following 

values: 390000=J [J/kg], liquidus and solidus 

temperatures 
926=LT

[K] and 
886=ST

[K], 

temperature of environment 300=T [K], initial 

temperature of the solidifying cast 9600 =T [K], 

initial temperature of the casting mould 5900, =mT

[K] and thermal conductivity of the air gap 15=g . 

Moreover, in the liquid phase we have: 1275=lc

[J/(kg K)], 2498=l [kg/m3], 183=l [W/(m 

K)], in the solid phase we have: 1077=sc [J/(kg 

K)], 2824=s [kg/m3], 183=l [W/(m K)] and 

in the mould we take: 620=mc [J/(kg K)], 

7500=l [kg/m3], 40=m [W/(m K)]. 

Value of the heat transfer coefficient is unknown 

and goal of the procedure is to retrieve it. In order to 

assess the correctness of the method we know the 

exact value of the reconstructed parameter 250=

[W/m2K]. Additionally, we used this exact value of 

the sought coefficient to generate the measurement 

values of temperature for the control point located in 

the middle of the mould (that is at point 0.5 [m]). 

However, to avoid the inverse crime (Ryfa & 

Bialecki, 2011), for calculating the simulated 

measurements we used the procedure of solving the 

direct problem but for different mesh (of much 

bigger density) than by solving the final inverse 

problem. In this way we have created 12 series of 

measurement values: perturbed by 0%, 1% and 2% 

error and read at every 1s, 5s, 10s and 20s. 

For solving the direct solidification problem we 

used the finite difference method combined with the 

procedure of correcting the temperature field in the 

vicinity of liquidus and solidus curves. We applied 

this procedure for the mesh consisted of 500 nodes 

in the cast region and 150 nodes in the mould region. 

The implicit difference scheme was executed with 

respect to the time variable. Step for the time 

interval was equal to 0.5 s.  

For minimizing functional (19) we used the IRM 

algorithm launched for the following values of 

parameters: number of individuals 20=N , number 

of iterations 50=I , mutation parameter 9.0=  

and narrowing parameter 4.0= . Each individual 

in our approach represents the value of sought 

coefficient  . The initial population of the 

individuals were randomly selected from interval 

[100,400]. And because of the heuristic nature of the 

IRM algorithm (meaning that every execution of the 

procedure can give slightly different result), we 

calculations were performed 10 time for each set of 

input data. Thanks to this we could observe the 

behavior of the examined procedure with respect to 

the stability of obtained results.  

In figure 2 there is displayed the distribution of 

relative error of the heat transfer coefficient 

reconstruction in dependence on the number of 

iterations in IRM algorithm. This is the result of 

executing the procedure for the cycle of 

measurements noised by 1% error and taken at every 

20 s. We can observe that the error decreases fast 

and quite quickly we reach the satisfying low value 

of this error. The calculations are however continued 

for ensuring the correctness of the final result. The 

slight increase of the error, observed in the figure, is 

caused by the fact that by solving the inverse 

problem the initial data are noised and the 

reconstructed temperature adjusts to the noised 

measured temperature once better, once worse 

leading to such slightly accidental behavior. The 

procedure is terminated after 50 iteration, because 

next iterations do not improve significantly the 

results, only extend the time of calculations.    

 

 
 

Fig. 2. Dependence between the relative error of the heat transfer 

coefficient reconstruction obtained for the cycle of measurements 

noised by 1% error and taken at every 20 s and the number of 

iterations in IRM algorithm. 

Table 1 includes the best obtained values of the 

reconstructed heat transfer coefficient together with 

the relative errors and standard deviations of these 

reconstructions obtained for all considered sets of 

input data. The relative errors are in each case of the 

perturbed input data lower than the input data error, 

only in case of the unburdened input data the error is 
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higher than zero, however it is not surprising, since 

the obtained results are just the approximate results. 

In case of measurements read at every 5s and at 

every 10s we observe additionally that the 

reconstruction error obtained for 1% input data error 

is worse than the error obtained for 2% input data 

error. It may be explained by the mentioned above 

fact that the minimized functional (19) is constructed 

on the basis of perturbed measurement data and it 

may happen that the reconstructed temperature adapt 

to the benchmark values once better, once worse. 

Values of the standard deviations are small, which 

means that in all considered cases we received 

similar results. In table 1 there are also collected the 

maximal absolute and relative errors of the 

temperature reconstruction. The conclusion is 

similar: in all cases of considered sets of input data 

the errors of temperature reconstruction are lower 

than the input data errors. Summarizing we may 

state that the noise of measurement values as well as 

the frequency of measurements do not influence 

significantly the quality of results.  

 

Table 1. Best obtained values of the reconstructed heat transfer 

coefficient ( ), relative errors (  ) and standard deviations  

( S ) of  these reconstructions,  together  with  the  maximal  

absolute  (
max

T )  and  relative  (
max

T )  errors  of  the 

temperature reconstruction in control point obtained for the 

various collections of input data. 

measuments error 

[%] 
  

[W/m2K] 
  

[%] 

S  
max

T  

[K] 

max

T  

[%] 

at every 1 

s 

0 249.85 0.060 0.509 0.111 0.022 

1 250.12 0.049 0.297 0.090 0.017 

2 250.42 0.166 0.266 0.307 0.595 

at every 5 

s 

0 249.98 0.007 0.372 0.013 0.002 

1 249.83 0.068 0.223 0.127 0.025 

2 249.97 0.013 0.248 0.025 0.005 

at every 

10 s 

0 250.03 0.010 0.399 0.019 0.004 

1 250.37 0.150 0.285 0.277 0.054 

2 249.92 0.033 0.074 0.061 0.012 

at every 

20 s 

0 249.93 0.032 0.628 0.061 0.012 

1 250.20 0.079 0.344 0.145 0.028 

2 250.93 0.373 0.248 0.689 0.133 

 

The discussed results collected in table are 

supported by the graphs displayed in figures 3 and 4. 

Figure 3 presents the distribution of relative error of 

the temperature reconstruction obtained for the cycle of 

measurements noised by 2% error and taken at every 

10 s and 20 s. Whereas figure 4 shows the 

distribution of temperature reconstructed in the 

control point located in the middle of the mould for 

the cycle of measurements taken at every 20 s and 

noised by 2% error. The reconstructed distribution 

of temperature is compared there with the exact 

distribution, however both lines cover, therefore one 

cannot observe any differences between these lines. 

 

 

 

 

 
(a) 

 
(b) 

Fig. 3. Relative error of the temperature  reconstruction obtained for 

the cycle of measurements noised by 2% error and taken at 

every 10 s (a) and 20 s (b) 

 

Fig .4.  Distribution of temperature reconstructed in the control 

point for the cycle of measurements taken at every 20 s and 

noised by 2% error (solid line – the exact temperature, dashed 

line – the reconstructed  temperature) 

5. CONCLUSIONS 
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In the paper we investigated the accuracy and 

usefulness of the approach enabling to solve the 

inverse one-dimensional solidification problem with 

the shrinkage of metal included. The process was 

described by using the model of solidification in the 

temperature interval, whereas the shrinkage of 

material was modeled basing on the mass balance 

equation. And the goal of the inverse problem was to 

retrieve the value of the unknown heat transfer 

coefficient together with the distribution of 

temperature in the cast and in the mould 

bounding the cast on the ground of the 

temperature measurements read from the sensor 

located in the middle of the mould. The 

procedure of solution was based on two 

algorithms: the implicit scheme of finite 

difference method supplemented by the 

procedure of correcting the field of temperature 

in the vicinity of liquidus and solidus curves for 

solving the direct problem and the immune 

optimization algorithm IRM for minimizing the 

functional representing the error of approximate 

distribution of temperature. 

The proposed procedure was tested by 

solving the specific problem on the ground of 

12 sets of measurements values. In all 

considered cases the reconstructions of the 

sought coefficient and of the temperature were 

perturbed by the errors lower than the 

measurement errors and the results obtained in 

10 launches of the procedure gave similar 

results. These observations led as to conclusion 

that the proposed method of solution works very 

well, gives satisfactory and stable results. 
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ZASTOSOWANIE ALGORYTMU 

IMMUNOLOGICZNEGO IRM DO ROZWIĄZANIA 

ODWROTNEGO ZADANIA KRZEPNIĘCIA 

STOPU METALI Z UWZGLĘDNIENIEM 

ZJAWISKA SKURCZU 

Streszczenie 

W pracy zdefiniowany jest model matematyczny 

odwrotnego jednowymiarowego zagadnienia krzepnięcia stopu 

metali z uwzględnieniem zjawiska skurczu. Proces ten jest 

opisany przy użyciu modelu krzepnięcia w przedziale 

temperatur, natomiast skurcz metalu zamodelowano na 

podstawie równania bilansu masy. Zagadnienie odwrotne polega 

na odtworzeniu współczynnika wnikania ciepła na brzegu formy 

graniczącym z otoczeniem. Brak tych danych zrekompensowany 

jest pomiarami temperatury w punkcie kontrolnym 

zlokalizowanym wewnątrz formy. Metoda rozwiązania 

rozważanego zagadnienia oparta jest na dwóch procedurach: na 

schemacie jawnym metody różnic skończonych uzupełnionym 

procedurą poprawy pola temperatury w sąsiedztwie krzywych 

liquidus i solidus oraz na algorytmie immunologicznym IRM. 
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