The effect of the assumed thermophysical properties of steel on the heat transfer calculation result in contact phenomena

Marcin Rywotycki1, Zbigniew Malinowski1, Aleksandra Przyłucka1, Krzysztof Sołek2

1AGH University of Science and Technology, Department of Heat Engineering & Environment Protection, al. Mickiewicza 30,30-059 Krakow, Poland.

2AGH University of Science and Technology, Department of Ferrous Metallurgy, al. Mickiewicza 30, 30-059 Krakow, Poland.

DOI:

https://doi.org/10.7494/cmms.2020.4.0738

Abstract:

The article presents a model of heat transfer between two solid surfaces remaining in contact under the effect of the force applied. The presented results were obtained from the authors’ own studies conducted with the application of a new method of determining the heat flux transferred between these surfaces. The method consists of two stages: the experiment and numerical calculations. The experimental tests include temperature measurements in specific points in two samples remaining in contact with each other. The numerical part uses the inverse solution and the finite element method for the calculation of the heat flux on the contact surface. An analysis was performed on the effect of the steel grade used in the tests on the result of heat transfer determination in contact phenomena. The calculations were conducted with the application of proprietary software using the inverse method integrated with FEM.

Cite as:

Rywotycki, M., Malinowski, Z., Przyłucka, A., & Sołek, K. (2020). The effect of the assumed thermophysical properties of steel on the heat transfer calculation result in contact phenomena. Computer Methods in Materials Science, 20(4), 165–172. https://doi.org/10.7494/cmms.2020.4.0738

Article (PDF):

Key words:

Heat transfer, Inverse method, Solid surface contact

References:

Falkus, J. (Ed.) (2012). Modelowanie procesu ciągłego odlewania stali. Monografia. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – Państwowy Instytut Badawczy.

Fang, W.-Z., Gou J.-J., Chen, L., Tao, W.-Q. (2018). A multi-block lattice Boltzmann method for the thermal contact resistance at the interface of two solids. Applied Thermal Engineering, 138, 122-132.

Feng, B., Tu, J., Zhang, Y.-H., Fan, L.-W., Yu, Z.-T. (2020). An improved steady-state method for measuring the thermal contact resistance and bulk thermal conductivity of thin-walled materials having a sub-millimeter thickness. Applied Thermal Engineering, 171, 114931.

Furmański, P., Wiśniewski, T.S. (2002) Thermal Contact Resistance and Other Thermal Phenomena at Solid-Solid Interface. Institute of Head Engineering – Warsaw University of Technology.

Furmański, P., Wiśniewski, T.S., Banaszek, J. (2008). Thermal Contact Resistance and Other Thermal Phenomena at Solid-Solid Interface (Wyd. 2). Institute of Heat Engineering – Warsaw University of Technology.

Madhusudana, C.V. (2014). Thermal Contact Conductance. Springer.

Malinowski, Z. (2001). Analysis of temperature fields in the tools during forging of axially symmetrical parts. Archives of Metallurgy, 46(1), 93–118.

Malinowski, Z., Lenard, J.G., Davies, M.E. (1994). A study of heat-transfer coefficient as a function of temperature and pressure. Journal of Materials Processing Technology, 41(2), 125–142.

Panagouli, O.K., Margaronis, K., Tsotoulidou, V (2020). A multiscale model for thermal contact conductance of rough surfaces under low applied pressure. International Journal of Solids and Structures, 200–201, 106–118.

Poński, M., Paluszyński, J., Dubała, K. (2013). Modele przepływu ciepła w ciałach stałych. Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo, 19(169), 129–134.

Ren, X.-J., Dai, Y.-J., Gou J.-J., Tao, W.-Q. (2021). Numerical study on thermal contact resistance of 8-harness satin woven pierced composite. International Journal of Thermal Sciences, 159, 106584.

Rosochowska, M., Chodnikiewicz, K., Balendra, R. (2004). A new method of measuring thermal contact conductance. Journal of Materials Processing Technology, 145(2), 207–214.

Rywotycki, M. (2017). Wymiana ciepła w warunkach kontaktu narzędzia i materiału w wysokotemperaturowych procesach metalurgicznych. Wydawnictwa AGH.

Rywotycki, M., Malinowski, Z., Szajding, A., Sołek, K., Falkus, J., Miłkowska-Piszczek, K. (2015). Identification of heat
flux at solid to solid interface. In A.J. Nowak, J. Banaszek, B. Šarler (Eds.). Numerical Heat Transfer 2015. Eurotherm Seminar 109, Gliwice–Warsaw, Poland. September 13–16 2015 – book of abstracts (pp. 267–276). Institute of Thermal Technology, Silesian University of Technology, Institute of Heat Engineering, Warsaw University of Technology.

Rywotycki, M., Malinowski, Z., Szajding, A., Falkus, J., Sołek, K., Miłkowska-Piszczek, K. (2016). Wymiana ciepła przy
przeróbce plastycznej metali – porównanie modeli. Hutnik. Wiadomości Hutnicze, 83(1), 13–17.

Telejko, T. (2001). Analiza porównawcza wybranych formuł do obliczania przewodności cieplnej stali. Hutnik. Wiadomości Hutnicze, 68(11), 418–423.

Wiśniewski, S., Wiśniewski, T.S. (2010). Wymiana ciepła (Wyd. 6). Wydawnictwa Naukowo-Techniczne.

Yovanovich, M.M. (2005) Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Transactions on Components and Packaging Technologies, 28(2), 182–206.

Zhao, K., Wang, B., Chang, Y., Tang, X., Yan, J. (2015). Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping. Applied Thermal Engineering, 79, 17–26.